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.Fig. 2a. Velocity profile at steady state across A-A.
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MEASUREMENT AND COMMIX CALCULATION
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Fig. 2b. Comparison between predicted and measured
temperature distribution at exit nozzle.

Bntering sodium is suddenly increased while the inlet
flow rate is maintained constant. The other case is the
normal scram in which the density change is accompanied
by 2 flow coastdown to 10% of the initial flow rate. Fig-
pre 2a presents the velocity profiles of the first case at
Bhe steady state along sections A-~A, as shown in Fl% 1

fT'he experimentally measured coolant temperatures

Bhe exit nozzle and the predicted temperatures by the
[COMMIX code during the transient of constant flow scram
pvith decreasing inlet coolant temperature are shown in
fFig. 2b. Agreements between the measured and predicted
iresults are good.

Based on this study, it is concluded that the numerical
bgimulations presented here provide detailed information
Fot the flow field and temperature distribution which would
elp greatly in design of the outlet plenum.
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5. Decommissioning of the SRE, W. F. Heine,
A. W. Graves, B. F. Ureda (Al)

The sodium reactor experiment (SRE) was a 20-MW(th)
sodium-~cooled, graphite-moderated reactor which had
been mothballed in 1967 and which required complete
decontamination and/or dismantling to allow return of the
ERDA-optioned reactor site to unrestricted private use.

The SRE, which is located at the Atomics Interna-~
tional Nuclear Development Field Laboratory in Santa
Susana, California, was built in the mid-1950’s and
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operated with two core loadings until 1964, when it was
shut down for initiation of the Power Expansion Program
(PEP) to modify and recore the reactor for operation at
30 MW(th). The PEP program was subsequently canceled
and the facility mothballed. The irradiated fuel had pre-
viously been encapsulated and stored on site.

In 1974, complete dismantling of the facility was initi-
ated as part of the Al Decontamination and Disposition of
Facilities Program. This program, which involves the
complete decontamination or dismantling of eight ERDA-
owned nuclear facilities at Santa Susana, is funded by
ERDA Environmental Controls Technology Division.

At the time the dismantling program was initiated,
there remained in the facility extensive activation prod-
ucts (>10* Ci) contained in the stainless-steel vessels,
vessel components, biological shielding, and carbon-steel
containment structures; residual primary sodium in the
vessel and primary sodium systems; 55,000 1b of contam-
inated primary sodium in the primary sodium fill tank;
residual noncontaminated sodium in the secondary sodium
systems; and extensive contaminated liquid and gaseous
waste holdup systems.

Calculations demonstrated that in-air gamma radiation
levels at the center of the reactor vessel would exceed
1000 R/h. It therefore became apparent that remote
tooling would be required for dissection of the vessel. To
this end, a rotating mast manipulator was designed and
fabricated at AI, mated with a plasma arc cutting system,
and installed in a full-scale mockup of the SRE vessel.
All cutting and geometry parameters were prepro-
grammed in the vessel mockup, using sections of each
component, including vessel walls, gridplate, core clamps,
vessel, bottom, etc. Following completion of the mockup
operations, the manipulator-plasma arc system was in-
stalled in the SRE vessel to initiate remote underwater
cutup.

Extensive preparations were performed in the SRE
facility during the time that the special tooling was being
developed. The 55,000 1b of primary sodium was trans-
ferred into 55-gal drums and subsequently shipped to
Hanford, Washington for reuse. The primary and secon-
dary sodium systems were removed, and the residual
sodium in the piping and components was passivated. All
auxiliary systems were removed. The sodium ‘‘heel”
was siphoned from the vessel, and the sodium residue
was passivated, using an alcohol system which was
plumbed into the vessel. The vessel was filled with
water, the loading face shield removed, and all removable
vessel internals grappled out.

Underwater explosive cutting was selected as the
technique for removal of fixed vessel internals, such as
sodium piping. Each piece to be cut was mocked up, and
the required cuts demonstrated by means of underwater
explosive cutting in a test tank. Cutting of the actual
piping in the SRE vessel was initiated early in Calendar
Year 1977.

The concrete biological shielding will be removed by
a combination of explosive demolition and demolition by
means of large impact hammers. All activated or
contaminated materials are packaged and shipped for
disposal by land burial at the licensed burial site at
Beatty, Nevada.

An additional requirement of the SRE decommissioning
was the headend preparation for reprocessing of the fuel
from the two irradiated SRE reactor cores. This fuel
could not be reprocessed in its original form because the
fuel was thermally bonded to the stainless-steel cladding
with eutectic NaK. The fuel assemblies were taken to the
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AT hot laboratories and, under an inert atmosphere ina
hot cell, the fuel was disassembled, declad, cleaned, and
reencapsulated in remotely welded aluminum canisters
for shipment to Savannah River for reprocessing.

On completion of the SRE decommissioning, all radio-
active materials will have been removed to allow
conversion of the facility for unrestricted use as a
manufacturing facility. The program has advanced the
state-of-the-art for nuclear facility decommissioning,
principally through the development of techniques for
remote cutting of irradiated stainless-steel vessels, the
underwater explosive cutting of irradiated components,
and the in sifu passivation of primary sodium in reactor
components.
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6. Design and Development of the CRBRP
Ex-Vessel Transfer Machine, C. E. Jones, Jr. (Al)

The fuel handling system for the Clinch River Breeder
Reactor Project (CRBRP) utilizes the ex-vessel transfer
machine (EVTM) to transfer core assemblies. This
paper describes the unique design features adopted and
development required during the EVTM design.

The EVTM transfers single irradiated and nonirra-
diated core assemblies contained in sodium-filled core
components pots (CCPs) between the reactor, the ex-
vessel storage tank (EVST), and the fuel handling cell
(FHC). It also transfers bare, nonirradiated core assem-
blies from the new fuel unloading station (NFUS) to the
EVST. The EVTM is mounted on a trolley which, in turn,
is positioned on rails on top of a gantry. The gantry
moves on crane rails between the Reactor Containment
Building (RCB) and the Reactor Service Building (RSB).
The trolley rails are perpendicular to the gantry rails,
allowing complete indexing of the EVTM. The basis for
the EVITM design is the FFTF-CLEM (close-loop ex-
vessel machine).

Heat generated by the irradiated core assemblies is
radiated to the cold wall from the sodium-filled CCPS,
and is removed by forced- or natural-air convection.
Cold wall heaters maintain new core assembly preheat.
Extensive testing was required to confirm the 20-kW
decay heat capability while assuring a maximum peak
fuel-cladding temperature of 676.7°C (1250°F). The major
uncertainties in the thermal design were the mode of heat
transfer in the CCPs and the effects of sodium-sodium
oxide deposition on the emissivity of the CCP and cold-
wall surfaces. The test results indicated a two-loop
convective heat transfer mechanism in the sodium-filled
CCPs, and minimum emissivity changes of the CCP and
the cold wall. CCP drying occurs by the time the surface
temperature reaches 426.7 to 482.2°C (800 to 900°F).

The EVTM originally was a tall machine with the
grapple drive chains remaining out of sodium. To shorten
the EVTM to an overall height of 10.4 m (34 ft), the
grapple suspension members must be immersed in sodi-
um, and that sodium-wetted member must pass through
the drive system. Testing was performed on both tape-
and crane-type chain. The crane chain was selected.
Initial results indicated excessive chain and drive system
wear. The redesigned drive system has resulted in a
chain meeting the five-year life goal.

The major problem affecting the structural design of
the EVTM and gantry was the seismic design require-
ment. To meet the requirement, several unique features
have been incorporated into the design. A slip joint is
utilized at the lower end of the EVTM, allowing both
horizontal and vertical motion while remaining sealed.




