Report on Quarterly Air Monitoring, Area IV, Second Quarter 2022

Santa Susana Field Laboratory Ventura County, California

Prepared for: United States Department of Energy

Prepared by: North Wind Portage, Inc.

Report on Quarterly Air Monitoring, Area IV, Second Quarter 2022

Santa Susana Field Laboratory Ventura County, CA

September 2022

Contract No. DE-EM0000837-DT0007583

Prepared for:

U.S. Department of Energy 4100 Guardian Street, Suite 160 Simi Valley, California 93063

Prepared by:

North Wind Portage, Inc. 1425 Higham Street Idaho Falls, Idaho 83402

EXECUTIVE SUMMARY

This report summarizes the United States Department of Energy (DOE) air monitoring activities conducted during the second quarter of 2022, which is the seventeenth quarter (Q17) of the monitoring period (April 1, 2022, to June 30, 2022) at Area IV within the Santa Susana Field Laboratory (SSFL), located in Ventura County, California. The area specifically discussed within this report is the DOE portion, Area IV of SSFL, known as the Energy Technology Engineering Center (ETEC). Year one of the Baseline Air Monitoring Program consisted of Quarter 1 through Quarter 4. Year two consisted of Quarter 5 through Quarter 7. Year 3 consisted of Quarter 8 through Quarter 11. Year 4 consisted of Quarter 12 through Quarter 15. The program is continuing for a fifth year, which consists of Quarter 16 through Quarter 19.

This quarterly report has been developed by North Wind Portage, Inc., on behalf of DOE in cooperation with The Boeing Company (Boeing) and the National Aeronautics and Space Administration (NASA), as part of the Baseline Air Monitoring Program.

In accordance with the *Final Baseline Air Monitoring Work Plan, Santa Susana Field Laboratory, Ventura County, California* (NASA 2017), the responsible parties are monitoring for particulate matter between 2.5 and 10 microns in aerodynamic diameter (PM₁₀), volatile organic compounds (VOCs), and radionuclides at air monitoring stations DOE-1, DOE-2, DOE-3, and DOE-4 encompassing the ETEC, Area IV portion of SSFL. Having developed the baseline levels for PM₁₀, VOCs, and radionuclides helps distinguish between levels that naturally occur or were previously present at the ETEC site and if onsite remediation activities produce elevated results. Air monitoring will be continued throughout remediation activities to be able to compare results from onsite remediation activities to baseline data in the Annual Air Monitoring Reports.

The following air monitoring activities conducted during 2022, Q2, by DOE within Area IV are summarized in this report:

- Collected meteorological data from one location (DOE-4);
- Collected PM₁₀ data from four locations (DOE-1 through DOE-4);
- Collected air samples from four locations (DOE-1 through DOE-4) for VOC laboratory analysis; and
- Collected radionuclide samples for laboratory analysis from four locations (DOE-1 through DOE-4).

Meteorological data, PM₁₀, and radionuclide data all met the data completeness goal of 80%, and VOC data met the completeness goal of 85% for Q17. The eighteenth quarter of the Air Monitoring Program will begin July 1, 2022.

The following site activities were conducted during Q17 by DOE within Area IV:

- Quarterly site-wide groundwater level monitoring
- CDM Smith conducted groundwater sampling activities at the Former Sodium Disposal Facility as a part of groundwater interim measures
- Surveillance and maintenance.

CONTENTS

EXECI	JTIVE SU	JMMARY v
ACRO	NYMS A	ND ABBREVIATIONS
1.	INTRO	DUCTION
	1.1	Regional Climate and Wind Direction1-2
2.	SUMM	ARY
3.	ANALY	TICAL SAMPLING EVENTS
4.	DATA	
	4.1	Meteorological Data4-1
	4.2	PM ₁₀ Data4-4
	4.3	Volatile Organic Compound Data 4-5
	4.4	Radionuclide Data4-5
5.	QA/QC	ACTIVITIES
	5.1	Field QA/QC5-6
	5.2	Laboratory QA/QC
	5.3	Audit Results
6.	REFERE	NCES

FIGURES

- Figure 1 SSFL Air Monitoring Locations
- Figure 2 DOE Air Monitoring Locations
- Figure 3 DOE Quarterly Wind Rose

TABLES

Table 1. Data screening quality control codes for meteorological data	.4-1
Table 2. Data screening summary for monitored meteorological parameters.	.4-3
Table 3. PM ₁₀ data completeness for April 1, 2022, to June 30, 2022	.4-4
Table 4. Top five PM ₁₀ 24-hour average concentration days for Q17	.4-4

Table 5. Ambient air VOC data completeness.	.4-5
Table 6. Gross alpha and beta-gamma average results for Q17	.4-6
Table 7. Meteorological sensor recommended maintenance frequency (Met One).	.5-5
Table 8. PM ₁₀ audit completeness.	. 5-6

APPENDICES

Appendix A – PM ₁₀	Daily Averages	and Monthly	Statistics
Appendix 7 10110	, buily / weiluges	and wontenry	Statistics

- Appendix B Analytical Results for Ambient Air VOCs
- Appendix C Radionuclide Results
- Appendix D PM₁₀ Monthly Audit Reports and Flow Verification Results

ACRONYMS AND ABBREVIATIONS

°C	degrees Celsius
°F	degrees Fahrenheit
μCi	microcurie(s)
µg/m³	microgram(s) per cubic meter
Boeing	The Boeing Company
CAAQS	California Ambient Air Quality Standard
CFR	Code of Federal Regulations
CLIN	contract line item number
DASC	Data Assessment Statistical Calculator
DOE	U.S. Department of Energy
DTSC	State of California Department of Toxic Substances Control
EPA	U.S. Environmental Protection Agency
ETEC	Energy Technology Engineering Center
GC	gas chromatography
Hg	mercury
HHRA	Human Health Risk Assessment
m	meter(s)
m/sec	meter(s) per second
mb	millibar(s)
MDC	minimum detectable concentration
mL	milliliter(s)
mph	miles per hour
MS	mass spectrometry
MDL	method detection limit
NAAQS	National Ambient Air Quality Standards
NASA	National Aeronautics and Space Administration
NIST	National Institute of Standards and Technology
pCi	picocurie(s)
PM ₁₀	particulate matter less than 10 microns in aerodynamic diameter
Q17	seventeenth quarter
QA	quality assurance
QC	quality control
RAWS	Remote Automatic Weather Stations
RPD	relative percent difference
SDG	sample delivery group
SSFL	Santa Susana Field Laboratory
VOC	volatile organic compound

1. INTRODUCTION

National Aeronautics and Space Administration (NASA), The Boeing Company (Boeing), and the U.S. Department of Energy (DOE), also known as the responsible parties, are performing air monitoring at the Santa Susana Field Laboratory (SSFL) site located in Ventura County, California. The SSFL is a business segment of Boeing. SSFL operates the 2,849-acre site located atop a range of hills between the Simi and San Fernando valleys, north of Los Angeles. The westernmost 290 acres of the SSFL, known as Area IV, contains both DOE and Boeing facilities. The DOE portion is mainly contained within the 90 acres known as the Energy Technology Engineering Center (ETEC).

When opened in the late 1950s, ETEC was ideally remote from population centers to enable development of security-sensitive projects. These projects supported research for DOE and its predecessor agencies for nuclear research and energy development. Area IV includes buildings that house test apparatus for largescale heat transfer and fluid mechanics experiments, mechanical and chemical test facilities, office buildings, and auxiliary facilities.

Air monitoring is being conducted in accordance with the *Final Baseline Air Monitoring Work Plan, Santa Susana Field Laboratory, Ventura County, California* (NASA 2017), which was submitted to the State of California Department of Toxic Substances Control (DTSC) on September 21, 2017. DTSC approved the Work Plan. Final locations of the air monitoring locations were approved by DTSC on January 30, 2018 (DTSC 2018).

The objective of the Air Monitoring Program is to evaluate project conditions and provide a basis for determining the magnitude of deviation from those baseline conditions that may result from onsite remediation activities (project) at SSFL. Responsible parties are monitoring for particulate matter between 2.5 and 10 microns in aerodynamic diameter (PM₁₀), and volatile organic compounds (VOCs), at 14 locations at SSFL. Data was collected for four perimeter samplers (DOE-1 through DOE-4) and analyzed for gross alpha and gross beta. Individual radionuclide concentrations were determined by analysis at an offsite laboratory for these same four locations. Meteorological data is also collected as a part of the Air Monitoring Program.

Figure 1 shows the air monitoring locations for the Air Monitoring Program. These locations were selected based on the areas to be remediated, with consideration of winds in the area, topographic features, and accessibility. The air monitoring sites were also selected based on guidance obtained from the U.S. Environmental Protection Agency's (EPA's) *Quality Assurance Handbook for Air Pollution Measurement Systems*, Volume II, Ambient Air Monitoring Program (EPA 2017) and *Meteorological Monitoring Guidance for Regulatory Modeling Applications* (EPA 2000). Sites were evaluated per 40 Code of Federal Regulations (CFR) 58, Appendix C – Ambient Air Quality Monitoring Methodology. DOE is responsible for DOE-1, DOE-2, DOE-3, and DOE-4 of the 14 monitoring locations, represented in Figure 1. VOCs, PM₁₀, and radionuclides are monitored at the four DOE monitoring locations DOE-1 through DOE-4 are shown in Figure 2.

This report summarizes the results and quality assurance (QA) activities performed during the second quarter of 2022, which was from April 1, 2022, through June 30, 2022. This represents the seventeenth quarter (Q17) of the monitoring period.

1.1 Regional Climate and Wind Direction

The climate in the SSFL area is characterized as "Mediterranean." The mean temperature during the winter months is approximately 50 degrees Fahrenheit (°F) and the mean temperature in the summer months is approximately 70°F. Based on climate data for 2019 and 2020 from Weather Currents, average rainfall is on the order of 15.9 inches per year. The majority of the rainfall occurs between December and April with January and February being the wettest months.

Through the second quarter in 2022, the Simi Valley received approximately 1.69 inches of rainfall.

The average hourly wind speed in Simi Valley varies significantly by season. The more turbulent part of the year lasts for 6 months, from November to April, with average western wind speeds of more than 7 miles per hour (mph). The calmer time of year lasts for 6 months, with northerly winds from May to October.

During the fall, winter, and spring, Santa Ana winds can blow from the north or northeast in excess of 35 mph.

2. SUMMARY

This report summarizes the air monitoring data collected during the Q17 reporting period (April 1, 2022, through June 30, 2022).

Quality objectives and data completeness were met for all meteorological, PM₁₀, VOC, and radionuclide data for Q17 of the Air Monitoring Program.

Urban background data compared with air monitoring data indicate that the PM_{10} concentrations measured at stations DOE-1, DOE-2, DOE-3, and DOE-4 during Q17 are comparable to the PM_{10} concentrations measured at stations characterizing urban background. Other sources that emit VOC characteristics are motor vehicle emissions, fossil fuel combustion, and wildfires. The results are reflected when considering SSFL site's urban background and relatively remote location from vehicle traffic. PM_{10} concentrations did not exceed the California Ambient Air Quality Standard (CAAQS; 50 micrograms per cubic meter [μ g/m³]) during Q17. During Q17 DOE-3 experienced a sensor failure starting June 19, 2022, and was out of commission until June 24, 2022 (as noted in Appendix A).

During Q17, no VOC analytes were detected above the EPA regional screening level (RSL).

Data collected during Q17 agrees with data collected, analyzed, and reported by the State of California DTSC, Los Angeles County Emergency Response Organization, the DOE Emergency Response organization, or other Multi-Agency Task Forces. Air monitoring at Area IV of the SSFL is to be continued starting July 1, 2022, for the eighteenth quarter of the Air Monitoring Program.

Site activities during Q17 included quarterly site-wide groundwater level monitoring, surveillance and maintenance, and groundwater sampling activities conducted by CDM Smith at the Former Sodium Disposal Facility as part of the groundwater interim measures.

3. ANALYTICAL SAMPLING EVENTS

VOCs are collected according to the EPA Toxic Compendium Method TO-15, *Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)* (EPA 1999). Twenty-four-hour time-integrated samples are collected into Summa canisters via a flow controller and sent to an offsite laboratory for analysis. VOCs are collected every other week. There were six VOC sampling events with six field duplicate samples collected during this reporting period.

During Q17, radionuclide samples were collected at four perimeter sampler locations, DOE-1 through DOE-4. These samples were collected on glass fiber (Type A/E) filters that are changed twice a week. After a minimum 120-hour holding time to allow the decay of short-lived radon and thoron daughter products, the samples are simultaneously counted for gross alpha and beta activity with a low-background, thinwindow, gas-flow proportional-counting system continually purged with P-10 argon/methane counting gas over a preset time interval. There were 104 airborne radioactivity filter samples collected in Q17 — 26 each for DOE-1, DOE-2, DOE-3, and DOE-4. Following analysis for gross alpha and gross beta radiation, sample filters were combined to form one composite sample representative of each location. The four composite samples were then analyzed for individual radionuclides at an offsite laboratory.

4. DATA

Sections 4.1 through 4.4 discuss Q17 air monitoring data.

4.1 Meteorological Data

General Summary

Meteorological data, also called weather data, is being collected as part of the ETEC cleanup and restoration effort. This information, particularly the wind direction and wind speed, can be used to help understand how dust and other air pollutants from the site are carried by the wind to possibly affect nearby public and residential areas. This is especially important when the E-BAM particulate monitors at the site detect higher than normal amounts of dust in the air. Scientific computer models can be used with this weather data in association with the particulate monitoring data to describe the air quality for the communities near the ETEC site. However, before the weather data can be used with the computer models it must first be tested for completeness and accuracy. A detailed description of the weather data collection and quality testing is provided in the following paragraphs.

Monitored meteorology parameters at the DOE-4 station included wind speed, wind direction, air temperature at 2 meters (m) and 10 m, relative humidity, precipitation, barometric pressure, and solar radiation. In addition, statistical parameters provided by the data logger included delta temperature (i.e., the 10-m temperature minus the 2-m temperature), maximum wind speed (i.e., wind gust), and standard deviation of wind direction. Observations were recorded at 15-minute intervals corresponding to minutes :00, :15, :30; and :45 each hour. There were 91 days in this reporting period (Q17) from 01 April 2022 through 30 June 2022 with a total of 8,736 possible 15-minute observations. This is the second quarter of Year 5 of the baseline monitoring.

Data Validation and Statistics

Data validation screening was performed on the recorded meteorological observations pursuant to EPA's *Meteorological Monitoring Guidance for Regulatory Modeling Applications* (EPA 2000) Table 8-4 (Suggested Data Screening Criteria) and Table 8-3 (Suggested Quality Control Codes). Validation screening provided the basis for evaluating data completeness and for determining sensor performance and/or maintenance status. Validation was performed following each weekly data download. Data validation quality control codes applied to the meteorological observations are defined in Table 1.

Code	Meaning	Description (as used for ETEC meteorological data validation)
0	Valid	PASS – Observation is accurate within the performance limits of the instrument (i.e., value passes all data validation screening criteria).
3	Acceptable	PASS – Observation originally failed initial quality control (QC) check (see Code 6), but additional review using other independent data and meteorological judgment support final validity.
6	Failed initial QC check	FAIL – Observation did not pass data validation screening criteria.
7	Suspect	FAIL – Observation failed initial data validation QC check (see Code 6) and could not be verified through additional review using other independent data.
8	Invalid	FAIL – Observation judged to be inaccurate or in error, and the cause is known.
9	Missing	FAIL – Observation was not collected.

Table 1. Data screening quality control	l codes for meteorological data.
---	----------------------------------

The validation screening involved comparing, on an individual parameter basis, the recorded values (i.e., observations) against the EPA screening criteria shown in Table 2. The data validation procedure involved an initial automated review to apply a first level QC Code of 0 (valid), 6 (failed), or 9 (missing) as defined in Table 1. Observations initially flagged with a QC Code = 6 were then manually (i.e., second-level) reviewed by a project meteorologist. The procedure is outlined below:

- Values meeting all screening criteria for the respective meteorological parameter were automatically considered "valid" (QC Code = 0).
- Values not meeting a screening criterion were automatically flagged as "failed initial QC" (QC Code = 6). These values were subjected to second-level manual meteorological review using other available observations (e.g., 2-m vs. 10-m temperature at DOE-4 or from nearby Remote Automatic Weather Stations [RAWS] meteorological station CEEC1 in the Cheeseboro Canyon, California, area located 2.6 miles south of the DOE-4 site), and meteorological judgment:
 - Values confirmed by second-level review were deemed "acceptable" (final QC Code = 3).
 - \circ Otherwise, the values were deemed "suspect" (final QC Code = 7).
- Observations known to be inaccurate (QC Code = 8).
- Missing observations were automatically flagged as "missing" (QC Code = 9).

Values that pass validation with a final QC Code of 0 or 3 are included in the data completeness statistics and the final validated meteorological data set. Values with a final QC Code of 7, 8, or 9 are excluded from the final dataset and counted against the data completeness percentage. Quarterly data statistics for the meteorological parameters are listed in Table 2 along with year-to-date and project-to-date results. Yearto-date and project-to-date percentages are calculated as total valid observations through the completed quarters for the year divided by the total possible observations through this same period.

The completeness goal for meteorological data is 80% on an annual basis. Data completeness statistics for all completed reporting quarters in Year 5 of the Air Monitoring Program are presented in Table 2.

Wind Rose

The final validated 15-minute meteorological dataset was used to develop the wind rose for Q17 as presented in Figure 3. A wind rose is a graphical representation of wind speed and direction distribution (or wind climatology) for the period of interest. The frequency of winds blowing from specific directions are shown as petals on the wind rose, with the frequency of wind speeds depicted by color bands. Calm winds are identified as being less than 0.5 meters per second (m/sec).

During Q17, data capture for wind speed and direction at DOE-4 was 100%. The average and maximum wind speeds were 3.97 m/sec and 13.1 m/s, respectively. The maximum recorded wind gust was 19.9 m/sec. The predominant wind direction was from the east-southeast (ESE).

Meteorological	Screening Criteria ⁽¹⁾	Data Completeness Percent (%) ⁽²⁾		
Parameter	(for valid sensor responses)	Q17	Year 5 to Date	Project to Date
	between 0 and 25 m/sec			
Wind Speed	> 0.1 m/sec variation over 3 hours	100	99.99	94.08
	> 0.5 m/sec variation over 12 hours			
	between 0 and 360 degrees	100	99.99	94.88
Wind Direction	> 1 degree variation over 3 hours			
	> 10 degree variation over 12 hours			
Standard Deviation of	f Inherits the completeness stats of Wind	100	99.99	04.99
Wind Direction	Direction	100	99.99	94.88
	≤ local record high (monthly basis)			
Temperature	≥ local record low (monthly basis)	100	00.00	94.88
@ 2 m	> 0.5 degrees Celsius (°C) variation over 12	100	99.99	
	hours			
T	≤ local record high (monthly basis)			
Temperature @ 10 m	≥ local record low (monthly basis)	100	99.99	94.88
	> 0.5°C variation over 12 hours			
	≤ 0.1°C during daytime			
Delta Temperature	≥ -0.1°C during nighttime	100	99.99	94.88
	between -3.0 and 5.0°C			
	relative humidity between 0-100%			89.04
Relative Humidity	dew point T ≤ ambient T		99.99	
(and Dewpoint	dew point T \leq 5.0°C variation over 1 hour	100		
Temperature)	dew point T > 0.5°C variation over 12 hours			
	≤ 1 inch in 1 hour		99.99	94.87
Precipitation	≤ 4 inches in 24 hours	100		
·	≥ 2 inches in 3 months			
	between 871 and 982 millibar (mb) (local)			94.88
Barometric Pressure	(i.e., between 940 and 1060 mb sea level)	100	99.99	
	\leq 6 mb variation over 3 hours			
	> 0 at night			
Solar Radiation	≤ maximum possible for date and latitude	100	99.95	94.85

Table 2. Data screening summary for monitored meteorological parameters	
Table 7. Data screening summary for monitored meteorological parami	ters

(1) Screening criteria from EPA Meteorological Monitoring Guidance (EPA 2000), Table 8-4.

(2) Data Completeness % = [Observations Passing] / [Possible Observations)].

a. Missing or suspect observations count against data completeness statistics.

- b. Year Two is an abbreviated data collection year spanning the period Apr 15-Dec 31, 2019 (i.e., Quarters 5, 6, and 7). This was done to synchronize future data collection years with calendar years.
- c. Last column in this table represents the cumulative Completeness % for all completed quarterly reporting periods.

(3) The number of possible 15-minute observations in the completed reporting periods:

• Q05 = 8,736 • Q08 = 8,736 • Q12 = 8,640	• Q02 = 8,832 • Q06 = 8,832 • Q09 = 8,736 • Q13 = 8,736 • Q17 = 8,736	• Q03 = 8,832 • Q07 = 7,488 • Q10 = 8,832 • Q14 = 8,832	 Q04 = 8,640 (only 3 quarters) Q11 = 8,832 Q15 = 8,832 	 Year One = 35,040 Year Two = 25,056 (abbreviated) Year Three = 35,136 Year Four = 35,040 Year Five = 17,376 (to-date) Project = 147,648 (to-date)
---	---	--	--	--

4.2 PM₁₀ Data

PM₁₀ data, defined as coarse particles between 2.5 and 10 microns in aerodynamic diameter, are measured at the ETEC site. Sources of particulate matter can be naturally occurring or caused by human activity. The air monitoring conducted at ETEC is used to determine if any suspended particles are from activities conducted onsite or if they are consistent with surrounding air quality data. Some of the naturally occurring particles can originate from high winds, forest or grass fires, burning of fossil fuels in vehicles, or stirred-up road dust.

PM₁₀ data are collected with Met One E-BAM monitors at four monitoring locations. The Met One E-BAM uses the principle of beta attenuation to provide a determination of mass concentration. Twenty-four-hour concentrations are calculated from the hourly concentrations. There were 91 days in this reporting period.

- DOE-1 had valid readings all 91 days
- DOE-2 had valid readings all 91 days
- DOE-3 had valid readings 87 out of 91 days
- DOE-4 had valid readings all 91 days

DOE-1, DOE-2, and DOE-4 had 100% data completeness for PM₁₀ in Q17. DOE-3 had a completeness of 96%, for a total data completeness of 99%, exceeding the project goal of 80% completeness for total samples collected (see Table 3). The complete table of daily averages is presented in Appendix A. The unit at DOE-3 (W23313) stopped working on June 19, 2022, due to a failed air pump, flow sensor, and board stack assembly and had to be repaired. The unit at DOE-3 (W23313) was replaced with backup unit (W23314), and DOE-3 was back up and running on June 24, 2022. DOE-3 had four days during which no data was collected.

Location	Valid Readings (Days)	Possible Readings (Days)	Data Completeness (Percent)
DOE-1	91	91	100%
DOE-2	91	91	100%
DOE-3	87	91	96%
DOE-4 91		91	100%
	Aver	age Total Data Completeness	99%

Table 3. PM_{10} data completeness for April 1, 2022, to June 30, 2022.

The five highest PM_{10} results identified for the reporting period are listed in Table 4 along with the CAAQS for PM_{10} . PM_{10} concentrations were consistent with levels typically found in urban air. Of these top five results, two were recorded at DOE-2, two at DOE-4, and one at DOE-3. None of the top five values in Q17 were above the CAAQS of 50 µg/m³ or NAAQS of 150 µg/m³.

Date	Location	PM ₁₀ Value (µg/m³)	CAAQS (µg/m³)			
4/10/2022	DOE-2	48.958	50			
6/2/2022	DOE-3	42.50	50			
6/2/2022	DOE-4	42.416	50			
4/10/2022	DOE-4	42.00	50			
4/27/2022	DOE-2	41.875	50			

Table 4. Top five PM₁₀ 24-hour average concentration days for Q17.

Note: No values were above CAAQS screening level.

4.3 Volatile Organic Compound Data

VOCs are organic chemicals that have a high vapor pressure, which causes them to evaporate quickly and enter the surrounding air. VOCs can be naturally occurring or man-made. The VOC data collected can help distinguish between man-made detections from onsite activities or naturally existing organic chemicals. The VOC data collected are compared against screening levels. These screening levels are risk-based concentrations derived from standardized equations combining exposure information with toxicity data.

All four DOE locations were sampled each day during the six VOC sampling events this period. Data completeness goals for VOCs exceeded the project goal of 85% (see Table 5).

Location	Valid Readings (Days)	Possible Readings (Days)	Data Completeness (Percent)		
DOE-1	6	6	100%		
DOE-2	6	6	100%		
DOE-3	6	6	100%		
DOE-4	6	6	100%		
	Ave	100%			

Table 5. Ambient air VOC data completeness.

VOC detection results are presented in Table B-1 (Appendix B), including comparison to the April 2019 DTSC Human Health Risk Assessment (HHRA) Note 3 Screening Levels (DTSC 2019) or the 40 CFR 136 Appendix D for MDLs. During Q17, no VOC analytes were detected above the EPA regional screening level (RSL).

Two man-made VOC analytes, dichlorodifluoromethane (freon-12) and ethyl acetate, have been detected routinely at all four monitoring stations, during all quarterly sampling events, and in duplicate samples. These analytes were also detected as estimated values at NASA stations, but were not detected at Boeing stations. Based on laboratory QC data (method blanks, clean canister certifications), the sampling process and laboratory process are not the sources of the two analytes. The onsite source of the analytes is currently unknown.

Neither the establishment of sources for specific contaminants nor the performance of source apportionment was required for identifying remedial air quality impacts, nor was either within the scope or data quality objectives of the Air Monitoring Program.

4.4 Radionuclide Data

ETEC continuously monitors air at multiple locations for radioactive particles. This is performed for two reasons: (1) to determine the background airborne radioactivity concentration so that any possible releases from work activities can be detected, and (2) to detect any possible release from existing activities.

There were 104 airborne radioactivity filter samples collected in Q17 — 26 each for DOE-1, DOE-2, DOE-3, and DOE-4. Each sample was collected on a glass-fiber filter (as discussed in Section 3) and was analyzed using a "low background" Protean radiation counter system onsite. These samples included background radioactive materials and the potential of Area IV–specific radioactive materials.

The alpha and beta data are presented in Table C-1 (Appendix C). The onsite analysis determined only "alpha" or "beta/gamma" and did not analyze for specific isotopes. Isotopic analysis was performed later

by an offsite laboratory. Each sample produced a gross alpha and beta-gamma count. The analysis compared these values with the background radiation count rates, and using the volume of air collected determined the net counts and the minimum detectable concentration (MDC) for each sampling event. Some results in Table C-1 (Appendix C) are shown as negative values (because detector background is subtracted from the result).

All alpha samples except one were below the MDC, and this sample was only slightly greater than the MDC. Each MDC was below the airborne effluent limits specified in California regulations. There was no possibility of significant Area IV alpha radioactive material on these filters.

Approximately 43% of the beta samples were below MDC, and the gross (background radioactive material included) samples exceeded the MDC in 57% of samples, indicating the presence of airborne radioactive material (including background materials). The beta-gamma samples greater than the MDC were only slightly above the MDC, and were well below the effluent limits specified in California regulations. The elevated (but still low) results may be due to more airborne dust.

Following collection and onsite analysis, the air filters were composited and analyzed for specific radionuclides by an offsite laboratory. This data is shown in Table C-2 (Appendix C). This laboratory data determined that most radioactive material present was natural in origin, consisting of beryllium-7, polonium-210, potassium-40, combined radium-226 and radium-228, thorium-228, thorium-230, thorium-232, uranium-233/234, uranium-235/236, and uranium-238.

While artificial radionuclides (e.g., cesium-137, strontium-90, plutonium-239) were present in very small amounts, none of the results were above the MDC in Q17. The presence of these radionuclides is considered a part of the normal variation of global fallout and resuspension activities.

A summary of the gross air sampling data is shown in Table 6 below.

Location	Average alpha result (μCi/mL)	Average alpha MDC (μCi/mL)	Average beta result (µCi/mL)	Average beta MDC (μCi/mL)
DOE-1	-6.95E-17	6.06E-15	2.64E-14	2.56E-14
DOE-2	3.56E-16	6.06E-15	3.48E-14	2.56E-14
DOE-3	2.85E-17	6.10E-15	2.37E-14	2.57E-14
DOE-4	6.10E-16	6.10E-15	2.73E-14	2.57E-14
Average	2.31E-16	6.08E-15	2.81E-14	2.57E-14

Table 6. Gross alpha and beta-gamma average results for Q17.

5. QA/QC ACTIVITIES

The following QA/QC activities were conducted for the PM_{10} , VOC, radionuclide, and meteorological data collection and analysis.

5.1 Field QA/QC

5.1.1 PM₁₀

The 24-hour daily averages for Q17 are presented in Appendix A along with the monthly minimum, maximum, and 95th percentile for each station location.

Flow Verifications

Functionality of the Met One E-BAM units is verified and recorded monthly during instrument audits; however, the instruments are also checked several times a week for operability. During the monthly audits, the Met One E-BAM temperature, pressure, and flow rate are verified against a National Institute of Standards and Technology (NIST) traceable flowmeter. E-BAM units are occasionally swapped out for maintenance, and preliminary audits of the new units are performed. The Q17 audit results for the four DOE sites showed bias percentages that ranged from -1.20 to -0.75%. None of the results exceeded the flow rate measurement quality objective of +/- 4%.

Complete audit reports and flow verification results for Q17 are presented in Appendix D of this document. The flow rate verifications were based on 40 CFR 58, Appendix A, 3.3.1 and 4.2.2 through 4.2.3, along with the *Guideline on the Meaning and the Use of Precision and Bias Data Required by 40 CFR Part 58 Appendix A* (EPA 2007). The *Data Assessment Statistical Calculator* (DASC) tool, which is an EPA Excelbased software application, was used to perform the necessary statistical calculations based on the flowrate data collected during the monthly audits. Sections 2 and 2.5 of this EPA guidance document (EPA 2007) provide additional information and instruction for using the DASC tool.

5.1.2 VOCs

All data underwent at least two levels of QC review at the laboratory prior to transmission to North Wind. A minimum of 20% of the transmitted VOC results undergo a Level IV third-party data validation, annually. During this quarter, two of the six SDGs, P2201682 and P2202743, underwent the Level IV data validation. The data validation ensures that the required analytical measurement quality objectives are met to ensure the data are of sufficient quality for their intended purpose.

Each location had valid readings on the six sample days for a sample completeness of 100%. Data completeness goals for VOCs exceeded the project goal of 85%.

5.1.3 Field Duplicates

Six field duplicates were collected during this reporting period, one per sampling event. Ethyl acetate in SDGs #P2201682, P2202166, P2202388, and P2202566 was detected in four field duplicates that exceeded the quality objective of +/- 15% relative percent difference (RPD). For SDG #P2202743 the analytes n-Hexane and ethyl acetate were detected at levels higher than the RL in either the sample or duplicate, and in comparison, were reported as a non-detect in the associated sample or duplicate and exceeded the quality objective of +/- 15% RPD. Sixteen sample and duplicate analyte detections were within the quality objective of +/- 15% RPD. There were no other detections associated with the samples and associated duplicates collected during this reporting period.

5.1.4 Canister Pressure

Vacuum in the canisters is measured before and after sampling with an analog pressure gauge to ensure proper function. Final canister vacuums ranged from -5 inches mercury (Hg) to -1 inches Hg during this reporting period.

5.1.5 Radiological

The detector for onsite gross alpha and beta sample analysis is calibrated annually by a third-party vendor using sources traceable to the NIST. The detector is checked by counting alpha- and beta-emitting sources at the site when received from the vendor following calibration. This establishes an acceptable

performance range for daily source checks. On each day the detector is used, performance is determined with the site source. The detector may be used if the daily check is within the acceptable performance range.

Samples analyzed at the offsite laboratory are QC-checked at the laboratory. These QC checks include blanks, laboratory replicates, matrix spikes, and matrix spike duplicates. Barium, which behaves chemically similar to radium, is used as a carrier to determine the yield of the chemical extraction.

Since Q13, 100% of the radiological analytical results have undergone Level IV, third-party data validation. The data validation ensures that the required analytical measurement quality objectives are met to ensure the data are of sufficient quality for their intended purpose.

5.1.6 Meteorological

During the reporting period, a weekly data validation screening and review was performed on the monitored meteorological parameters based on the EPA guidance document *Meteorological Monitoring Guidance for Regulatory Modeling Applications* (EPA 2000), Table 8-4 – Suggested Data Screening Criteria, as outlined in Section 4.1. The data validation procedure provided the basis for evaluating data completeness and for determining sensor performance and/or maintenance status.

5.1.7 Maintenance

Routine visual checks were performed on the meteorological station during weekly data downloading site visits. This included inspection of the meteorological tower sensors, E-BAM monitoring unit wind sensors, and solar-powered batteries to ensure proper functioning.

5.1.8 Corrective Action

Issues and corrective actions regarding the PM_{10} monitors and the meteorological station are noted in Sections 5.1.8.1 and 5.1.8.2, respectively. Issues and corrective actions regarding the E-BAM monitors are noted in Section 4.2. No issues or corrective actions were noted regarding the remaining monitoring equipment or sampling events during this reporting period.

5.1.8.1 PM₁₀ Monitors

Refer to Section 4.2 for a detailed description of PM_{10} air monitoring equipment issues.

5.1.8.2 Meteorological Station

Although the data percent completion goal during Q17 was met: (1) the solar radiometer continued to record values that exceed the daily screening criteria and was affected by shadows cast by the tower, (2) the data logger clock time had drifted (slowed) by approximately 45 minutes, and (3) the improperly programmed data logger continues to affect calculation of delta temperature (i.e., temperature difference between 2 m and 10 m). These three items are discussed below, including issues and corrective actions/resolutions. The recommend sensor maintenance schedule is provided as item (4) below.

(1) Solar Radiometer:

Data Quality Issues:

- The solar radiometer continued to display an upward bias drift in the raw data observations.
- <u>Corrective Actions:</u>
 - <u>Bias Removal</u> In the quarterly report for Quarter 14, details of the bias and correction were first presented. Quarterly adjustment factors have been developed and applied to the project datasets starting with the first quarter of 2020 based on a statistical trend analysis. A "bias removal" adjustment factor was also developed and applied to the Q17 solar radiometer. All validated project meteorological datasets to-date now include "unbiased" solar radiometer observations.
 - <u>Resolutions</u> The unbiased observations are in line with the baseline year observations and theoretical values. The sensor drift bias will continue to be evaluated and correction factors applied during upcoming quarters. The following table presents the quarterly adjustment factors that have been applied to the solar radiometer raw data. In addition, replacement of the solar radiometer is being considered.

(adustment factor to eliminate drift bias)					
MONTH	2020	2021	2022		
1					
2	0.946	0.894	0.859		
3					
4					
5	0.924	0.889	0.861		
6					
7					
8	0.888	0.860	-		
9					
10					
11	0.893	0.849	-		
12					

Solar Radiometer Adjustment Factor - Quarterly (adustment factor to eliminate drift bias)

(2) <u>Wind Speed Sensor</u>

- Data Quality Issue:
 - Near the end of Quarter 15 the wind speed sensor failed and then began working again after an 11-day period. To avoid having the same failure, since Q16, the data has been closely monitored to verify that this is no longer a problem. This issue was not present during Q17.

- <u>Corrective Action:</u>
 - <u>Resolution</u> The wind speed sensor observations will continue to be monitored for unusual or unacceptable response. Replacement of the sensor or bearings will be performed if needed.

(3) <u>Delta Temperature Calculation</u>

- Data Quality Issue:
 - For meteorological monitoring, delta temperature should be defined as T at the higher level minus T at the lower level. However, the datalogger was improperly programmed to calculate the inverse of delta temperature when the station was replaced after the Woolsey Wildfire during Q3. Consequently, delta temperature observations are being calculated with an opposite sign compared to the values from the original data logger.
- <u>Corrective Action:</u>
 - <u>Datalogger Equation</u> Instead of reprogramming the datalogger to correctly calculate delta temperature, an adjustment multiplication factor of "-1" has been applied to the delta temperature values from the new data logger prior to performing the data validation.

<u>Resolution</u> – With application of the "-1" multiplication factor, delta temperature values in the validated project dataset accurately present delta temperature as:

Delta Temperature = [Temperature @ 2 m] minus [Temperature @ 10 m]

(4) Recommended Maintenance Schedule:

Although not a corrective action, the manufacturer's recommended maintenance frequency for meteorological sensors is presented below for information purposes. Proper and timely maintenance of the meteorological sensors is critical for ensuring that the data are not only valid (based on screening criteria) but also accurate. Schedules for maintenance and calibration are provided in the sensor user manuals and based on the in-service time of the sensor. Table 7 lists the recommended maintenance schedules for the Met One sensors installed at the DOE-4 meteorological station.

Sensor	Frequency	Maintenance
WS	6–12 Month	Inspect for proper operation (manual check of pulses per revolution, bearing condition, anemometer cup condition, and bearing replacement if warranted)
	12–24 Month	Return to Met One for complete overhaul
	6–12 Month	Inspect for proper operation (manual check of sensor readings through 360°)
WD	6–12 Month	Field calibration
	12–24 month	Replace bearings & potentiometer
т	6–12 Month	Inspect sensor for proper operation (field comparison sensor reading against a precision mercury thermometer)
RH 6–12 Month 12 Month		Inspect sensor for proper operation (compare sensor reading against local weather service or field psychrometer)
		Return sensor to Met One for calibration and replacement of O-rings and filter membrane
Rain Gauge	6 Month	Clean sensor and bucket and field verify proper operation
Pressure	12 Month	Return sensor to Met One for calibration and replacement of O-rings and filter membrane
Radiometer	Monthly	Clean sensor glass dome with clean rag/tissue

Table 7. Meteorological sensor recommended maintenance frequency (Met One).

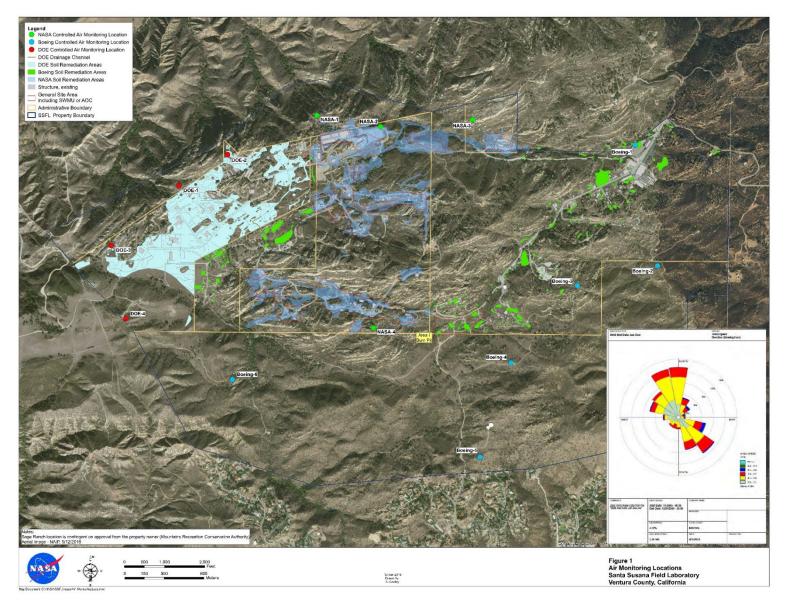
Note: Maintenance schedules as specified in the respective Met One sensor user manuals.

5.2 Laboratory QA/QC

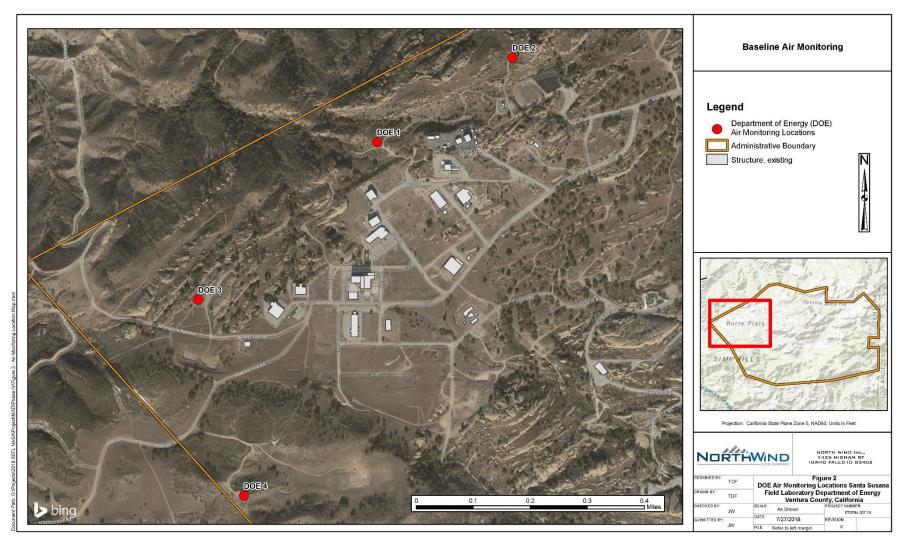
This report covers 30 air monitoring samples for VOCs collected and analyzed according to the EPA Toxic Compendium Method TO-15, *Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)* (EPA 1999). These samples were reported under six SDGs by the laboratory. All six SDG analyses were performed by ALS in Simi Valley, CA. For each SDG, the laboratory ran continuing calibration verification, a method blank, and laboratory control samples, and verified surrogate recoveries for each sample.

The laboratory provided certified clean canisters for the sampling events. The certification of the canister batch is considered the equipment blank for each sampling event. The ALS case narrative discusses the cleaning of the canisters.

5.3 Audit Results


The PM_{10} instruments were calibrated at the manufacturer and were functioning properly upon installation. The PM_{10} instruments were audited monthly with a secondary NIST traceable flow meter. Although audits occur only monthly, the instruments were checked several times a week to ensure that they were functioning. Table 8 lists the dates for audits conducted in April through June. No flow rate comparisons exceeded the project's acceptance criterion of +/- 4. The sample nozzles and support vanes were cleaned as needed. Complete audit reports are presented in Appendix D.

Location	Met One E-BAM Serial Number Parameter		Date
DOE-1	X16067	PM ₁₀	04/26/2022
DOE-2	Y12096	PM ₁₀	04/26/2022
DOE-3	W23313	PM ₁₀	04/26/2022
DOE-4	W23310	PM ₁₀	04/26/2022
DOE-1	X16067	PM ₁₀	05/19/2022
DOE-2	Y12096	PM ₁₀	05/19/2022
DOE-3	W23313	PM ₁₀	05/19/2022
DOE-4	W23310	PM ₁₀	05/19/2022
DOE-1	X16067	PM ₁₀	06/24/2022
DOE-2	Y12096	PM ₁₀	06/24/2022
DOE-3	W23314	PM ₁₀	06/24/2022
DOE-4	W23310	PM ₁₀	06/24/2022


Table 8. PM₁₀ audit completeness.

6. REFERENCES

- 10 Code of Federal Regulations (CFR) 20, Appendix B, "Annual Limits on Intake (ALIs) and Derived Air Concentrations (DACs) of Radionuclides for Occupational Exposure; Effluent Concentrations; Concentrations for Release to Sewerage," Table 2.
- 40 CFR 58, Appendix C Ambient Air Quality Monitoring Methodology.
- 40 CFR 136, Appendix B Definition and Procedure for the Determination of the Method Detection Limit.
- California Environmental Protection Agency, Department of Toxic Substances Control (DTSC). 2018. Approval of the Final Air Monitoring Station Locations for the Santa Susana Field Laboratory, Ventura County, California. January.
- California Environmental Protection Agency, DTSC. 2019. Human and Ecological Risk Office Human Health Risk Assessment Note Number 3, DTSC-modified Screening Levels. April. <u>https://www.dtsc.ca.gov/AssessingRisk/upload/HHRA-Note-3-April-2019.pdf.</u>
- National Aeronautics and Space Administration (NASA). 2017. Santa Susana Field Laboratory Baseline Air Monitoring Report Work Plan Report. Prepared for California Department of Toxic Substances Control. Prepared on behalf of National Aeronautics and Space Administration, George C. Marshall Space Flight Center, The Boeing Company, and Department of Energy, Energy Technology and Engineering Center. September. Available online at: <u>https://www.dtscssfl.com/files/lib_air_monitor/work_plan/67496_SSFL_AirMonitoringWorkPlan_Final.pdf</u>
- U.S. Environmental Protection Agency (EPA). 1999. Air Method, Toxic Organics-15 (TO-15), Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS). EPA 625/R-96/010b. January. Available online at: <u>https://www.epa.gov/homeland-security-research/epa-air-method-toxicorganics-15-15-determination-volatile-organic</u>
- U.S. Environmental Protection Agency (EPA). 2000. *Meteorological Monitoring Guidance for Regulatory Modeling Applications, United State Environmental Protection Agency, Office of Air Quality Planning and Standards*. EPA-454/R-99-005. February.
- U.S. Environmental Protection Agency (EPA). 2007. *Guideline on the Meaning and the Use of Precision and Bias Data Required by 40 CFR Part 58 Appendix A, Version 1.1.* EPA-454/B-07-001. October.
- U.S. Environmental Protection Agency (EPA). 2017. *Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, Ambient Air Monitoring Program.* EPA-454/B-17-001. January.

Figure 1 – SSFL Air Monitoring Locations

Figure 2 – DOE Air Monitoring Locations

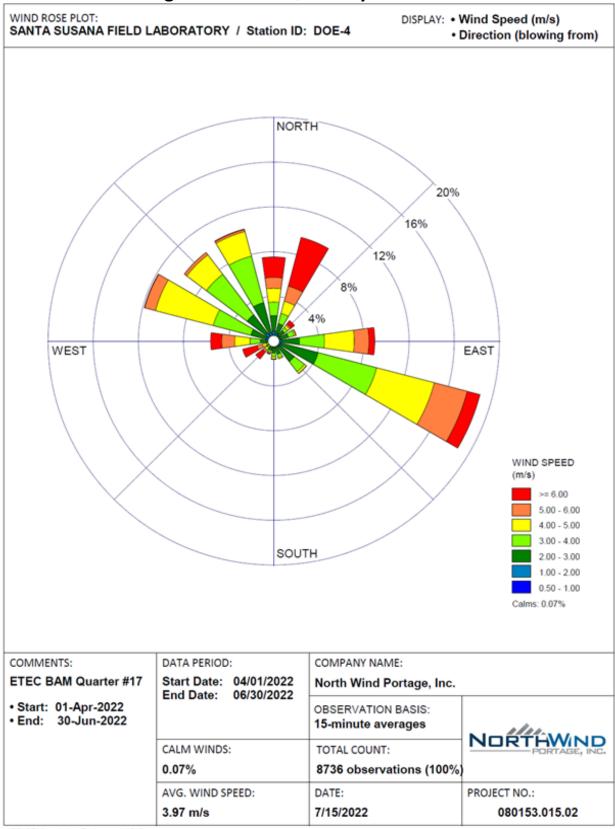


Figure 3 – DOE Quarterly Wind Rose

WRPLOT View - Lakes Environmental Software

APPENDIX A

PM₁₀ Daily Averages and Monthly Statistics

Pivi ₁₀ Daily Averages					
Site ID	DOE-1	DOE-2	DOE-3	DOE-4	
	PM ₁₀ (μg/m³)	PM ₁₀ (μg/m ³)	PM ₁₀ (μg/m ³)	PM ₁₀ (μg/m ³)	
Sample Date	(CAAQS	(CAAQS	(CAAQS	(CAAQS	
	50 μg/m³)	50 μg/m³)	50 μg/m³)	50 μg/m³)	
04/01/22	12.666	21.541	11.458	15.625	
04/02/22	10.833	9.75	11.416	13.666	
04/03/22	9.791	9.083	12.458	9.333	
04/04/22	12.416	13.041	12.666	12.708	
04/05/22	8.875	7.541	8.458	9.458	
04/06/22	15.541	10.5	11.166	12.166	
04/07/22	11.75	12.041	11.5	13.041	
04/08/22	10.375	10.083	10.291	11.125	
04/09/22	26.708	22.125	24.25	24.75	
04/10/22	37.333	48.958	37.458	42	
04/11/22	31.375	27.791	28.416	30.416	
04/12/22	17.125	12.208	13.625	12.416	
04/13/22	12.208	11	12.583	12.083	
04/14/22	13.833	13.541	16.625	16.583	
04/15/22	14.375	11.583	13.25	17.416	
04/16/22	5.666	6.708	6.625	7.291	
04/17/22	8.333	7.25	8.375	11.916	
04/18/22	15.333	15.041	16.5	13.791	
04/19/22	15.25	20.333	16.708	16.125	
04/20/22	10.333	9.041	11.875	16.166	
04/21/22	7.708	23.25	7.625	9.958	
04/22/22	8.5	6.166	7.083	7.625	
04/23/22	6.375	4.541	5.333	7.5	
04/24/22	5.625	4.25	5.875	6.583	
04/25/22	7.625	6.375	5.833	6.791	
04/26/22	19.916	14.916	22.5	18.375	
04/27/22	26.041	41.875	29.708	29.75	
04/28/22	20.666	20.708	20.375	22.333	
04/29/22	20.375	16	19.375	18.333	
04/30/22	21.541	18.625	20.416	20.833	
05/01/22	26.541	35.458	21.875	26.166	
05/02/22	21.625	16.5	25.333	20.166	
05/03/22	20.458	16.916	17.958	22.333	
05/04/22	21.208	27.416	21.666	20.125	
05/05/22	22.208	29.583	29.75	18.708	
05/02/22 05/03/22 05/04/22	21.625 20.458 21.208	16.5 16.916 27.416	25.333 17.958 21.666	20.166 22.333 20.125	

PM₁₀ Daily Averages

Site ID	DOE-1	DOE-2	DOE-3	DOE-4
	PM ₁₀ (μg/m ³)			
Sample Date	(CAAQS	(CAAQS	(CAAQS	(CAAQS
	50 μg/m³)	50 μg/m³)	50 μg/m³)	50 μg/m³)
05/06/22	15.75	19.25	18.083	15.083
05/07/22	20.166	18.958	29.125	23.125
05/08/22	21.208	21.25	21.083	25.041
05/09/22	20.583	15.666	20.666	18.375
05/10/22	11	10.666	13.291	14.041
05/11/22	8.875	8.208	9.541	9.416
05/12/22	10.708	10.791	10.958	11.791
05/13/22	9.458	9.25	8.916	10.708
05/14/22	10.166	9.416	10.791	10.041
05/15/22	14.75	12.791	16.583	14.25
05/16/22	23.541	21.375	22.041	23
05/17/22	20.916	17.625	17.291	25.833
05/18/22	24.291	23.25	26.166	27.208
05/19/22	21.583	18.916	18.958	25.708
05/20/22	9.25	15.708	11.75	13.416
05/21/22	13.583	13.083	19.458	14.5
05/22/22	16.625	16.125	13.208	26.916
05/23/22	23.916	30.458	23.291	28.708
05/24/22	21.5	18.166	22.666	24.625
05/25/22	19.75	18.541	23.5	29.375
05/26/22	19.583	24.375	31.916	20.208
05/27/22	14.916	16.75	10.5	16.041
05/28/22	11.375	11.458	10.666	13.291
05/29/22	15.75	10.5	13.791	15.25
05/30/22	27.458	41.375	22.833	28.375
05/31/22	22.083	36.541	15.75	17.333
06/01/22	27.208	19.916	19.166	16.458
06/02/22	29.958	33.625	42.5	42.416
06/03/22	20.208	20.791	18.708	23.125
06/04/22	14.666	21.041	20.916	19.666
06/05/22	11.375	16.25	12.125	15.708
06/06/22	13.875	18.333	14.708	29.75
06/07/22	20.208	15.125	17.75	20
06/08/22	21.625	25.041	27.041	21.041
06/09/22	23.041	23.125	18.833	21.041
06/10/22	24.25	17.208	25	20.791

Site ID	DOE-1	DOE-2	DOE-3	DOE-4
	PM ₁₀ (μg/m ³)	PM ₁₀ (μg/m ³)	PM10 (μg/m³)	PM ₁₀ (μg/m ³)
Sample Date	(CAAQS	(CAAQS	(CAAQS	(CAAQS
	50 μg/m³)	50 μg/m³)	50 μg/m³)	50 μg/m³)
06/11/22	13.166	13.333	13.083	15.5
06/12/22	15.875	12.5	16.75	15.708
06/13/22	18.666	18.875	14.583	15.208
06/14/22	23.166	18.958	20.083	24.125
06/15/22	24.666	25.25	31.25	26.833
06/16/22	25.125	25.541	35.583	38.5
06/17/22	16.875	18.125	22.125	18.125
06/18/22	15.916	16.958	15.333	18.25
06/19/22	10.583	15.75	10.458 *	12.791
06/20/22	13.375	12.541		12
06/21/22	19.791	17.333		13.375
06/22/22	20.458	12.875		13.75
06/23/22	11.291	8.791		10.916
06/24/22	13.791	7.833	15.318 *	9.208
06/25/22	11.375	8.708	11.875	10.916
06/26/22	14.875	11.375	14.25	12.166
06/27/22	22.083	19.458	24.875	22.458
06/28/22	14.708	15.458	17.166	13.5
06/29/22	19.833	16.625	21.625	16.875
06/30/22	21.208	17.708	18.083	16.041

Note: * indicates the average is only for a partial day worth of readings due to sensor failure

		April 2022 May 2022		June 2022					
		PM ₁₀			PM ₁₀		PM10		
Location			95th			95th			95th
ID	High	Low	PCTL	High	Low	PCTL	High	Low	PCTL
DOE-1	37.70800	9.83300	32.45800	31.91600	9.75000	26.97900	30.08300	7.91600	27.84550
DOE-2	33.25000	9.33300	30.12500	26.54100	6.50000	25.99950	26.00000	5.83300	22.85975
DOE-3	36.04100	8.83300	34.33300	29.20800	7.83300	26.52050	33.29100	7.75000	29.66630
DOE-4	41.16600	10.25000	34.58300	62.08300	7.83300	29.22900	29.00000	7.70800	25.09565

PM₁₀ Monthly Statistics

PCTL = percentile

APPENDIX B

Analytical Results for Ambient Air VOCs

(This page intentionally left blank)

Location			Method Detection		Screening Level	
ID	Sample Date	Analyte	Limit	Result	Value	SL Source
DOE-1	04/13/2022	Dichlorodifluoromethane	0.2	2.2	100	US EPA RSL
DOE-1	04/13/2022	Trichlorofluoromethane	0.098	1.1	1300	DTSC HHRA NOTE 3
DOE-2	04/13/2022	Dichlorodifluoromethane	0.2	2.3	100	US EPA RSL
DOE-2	04/13/2022	Trichlorofluoromethane	0.098	1.1	1300	DTSC HHRA NOTE 3
DOE-3	04/13/2022	Dichlorodifluoromethane	0.11	2.3	100	US EPA RSL
DOE-3	04/13/2022	Ethyl acetate	0.21	20	73	US EPA RSL
DOE-3	04/13/2022	Trichlorofluoromethane	0.099	1.1	1300	DTSC HHRA NOTE 3
DOE-4	04/13/2022	Dichlorodifluoromethane	0.11	2.3	100	US EPA RSL
DOE-4	04/13/2022	Ethyl acetate	0.16	5 (;J)	73	US EPA RSL
DOE-4	04/13/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-4	04/13/2022	Dichlorodifluoromethane	0.1	2.2	100	US EPA RSL
DOE-4	04/13/2022	Ethyl acetate	0.15	14 (;J)	73	US EPA RSL
DOE-4	04/13/2022	Trichlorofluoromethane	0.099	1.1	1300	DTSC HHRA NOTE 3
DOE-1	04/28/2022	Dichlorodifluoromethane	0.12	2.4	100	US EPA RSL
DOE-1	04/28/2022	Ethyl acetate	0.40	16	73	US EPA RSL
DOE-1	04/28/2022	Trichlorofluoromethane	0.12	1.2	1300	DTSC HHRA NOTE 3
DOE-1	04/28/2022	Dichlorodifluoromethane	0.12	2.4	100	US EPA RSL
DOE-1	04/28/2022	Ethyl acetate	0.40	14	73	US EPA RSL
DOE-1	04/28/2022	Trichlorofluoromethane	0.12	1.2	1300	DTSC HHRA NOTE 3
DOE-2	04/28/2022	Dichlorodifluoromethane	0.13	2.4	100	US EPA RSL
DOE-2	04/28/2022	Ethyl acetate	0.42	8.1	73	US EPA RSL
DOE-2	04/28/2022	Trichlorofluoromethane	0.12	1.2	1300	DTSC HHRA NOTE 3
DOE-3	04/28/2022	Dichlorodifluoromethane	0.12	2.4	100	US EPA RSL
DOE-3	04/28/2022	Ethyl acetate	0.39	3.7	73	US EPA RSL
DOE-3	04/28/2022	Trichlorofluoromethane	0.11	1.2	1300	DTSC HHRA NOTE 3
DOE-4	04/28/2022	Dichlorodifluoromethane	0.12	2.4	100	US EPA RSL
DOE-4	04/28/2022	Ethyl acetate	0.40	6.1	73	US EPA RSL
DOE-4	04/28/2022	Trichlorofluoromethane	0.12	1.2	1300	DTSC HHRA NOTE 3
DOE-1	05/13/2022	Dichlorodifluoromethane	0.13	2.4	100	US EPA RSL
DOE-1	05/13/2022	Ethyl acetate	0.42	18	73	US EPA RSL
DOE-1	05/13/2022	Trichlorofluoromethane	0.12	1.2	1300	DTSC HHRA NOTE 3
DOE-2	05/13/2022	Dichlorodifluoromethane	0.14	2.3	100	US EPA RSL
DOE-2	05/13/2022	Ethyl acetate	0.45	13	73	US EPA RSL
DOE-2	05/13/2022	Trichlorofluoromethane	0.13	1.1	1300	DTSC HHRA NOTE 3
DOE-2	05/13/2022	Dichlorodifluoromethane	0.12	2.3	100	US EPA RSL
DOE-2	05/13/2022	Ethyl acetate	0.38	3.3	73	US EPA RSL
DOE-2	05/13/2022	Trichlorofluoromethane	0.11	1.1	1300	DTSC HHRA NOTE 3
DOE-3	05/13/2022	Dichlorodifluoromethane	0.14	2.3	100	US EPA RSL
DOE-3	05/13/2022	Trichlorofluoromethane	0.13	1.2	1300	DTSC HHRA NOTE 3
DOE-4	05/13/2022	Dichlorodifluoromethane	0.14	2.3	100	US EPA RSL
DOE-4	05/13/2022	Ethyl acetate	0.44	28	73	US EPA RSL
DOE-4	05/13/2022	Trichlorofluoromethane	0.13	1.2	1300	DTSC HHRA NOTE 3
DOE-1	05/27/2022	Ethyl acetate	0.39	12 (V;)	73	US EPA RSL
DOE-1	05/27/2022	Trichlorofluoromethane	0.11	1.2	1300	DTSC HHRA NOTE 3

Table B-1. Ambient air VOC detection results compared to SLs.

1			Method		Screening	
Location			Detection		Level	
ID	Sample Date	Analyte	Limit	Result	Value	SL Source
DOE-2	05/27/2022	Dichlorodifluoromethane	0.12	2.5	100	US EPA RSL
DOE-2	05/27/2022	Ethyl acetate	0.39	8.1 (V;)	73	US EPA RSL
DOE-2	05/27/2022	Trichlorofluoromethane	0.11	1.2	1300	DTSC HHRA NOTE 3
DOE-3	05/27/2022	Dichlorodifluoromethane	0.12	2.5	100	US EPA RSL
DOE-3	05/27/2022	Ethyl acetate	0.38	7.8 (V;)	73	US EPA RSL
DOE-3	05/27/2022	Trichlorofluoromethane	0.11	1.2	1300	DTSC HHRA NOTE 3
DOE-3	05/27/2022	Dichlorodifluoromethane	0.12	2.6	100	US EPA RSL
DOE-3	05/27/2022	Ethyl acetate	0.38	20 (V;)	73	US EPA RSL
DOE-3	05/27/2022	Trichlorofluoromethane	0.11	1.2	1300	DTSC HHRA NOTE 3
DOE-4	05/27/2022	Dichlorodifluoromethane	0.13	2.6	100	US EPA RSL
DOE-4	05/27/2022	Ethyl acetate	0.40	9.6 (V;)	73	US EPA RSL
DOE-4	05/27/2022	Trichlorofluoromethane	0.12	1.2	1300	DTSC HHRA NOTE 3
DOE-1	06/09/2022	Dichlorodifluoromethane	0.13	2.3	100	US EPA RSL
DOE-1	06/09/2022	Ethyl acetate	0.43	12	73	US EPA RSL
DOE-1	06/09/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-2	06/09/2022	Dichlorodifluoromethane	0.14	2.2	100	US EPA RSL
DOE-2	06/09/2022	Ethyl acetate	0.46	13	73	US EPA RSL
DOE-2	06/09/2022	Trichlorofluoromethane	0.13	1.1	1300	DTSC HHRA NOTE 3
DOE-3	06/09/2022	Dichlorodifluoromethane	0.13	2.3	100	US EPA RSL
DOE-3	06/09/2022	Ethyl acetate	0.41	6.0	73	US EPA RSL
DOE-3	06/09/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-4	06/09/2022	Dichlorodifluoromethane	0.14	2.3	100	US EPA RSL
DOE-4	06/09/2022	Ethyl acetate	0.44	8.1	73	US EPA RSL
DOE-4	06/09/2022	Trichlorofluoromethane	0.13	1.1	1300	DTSC HHRA NOTE 3
DOE-4	06/09/2022	Dichlorodifluoromethane	0.13	2.2	100	US EPA RSL
DOE-4	06/09/2022	Ethyl acetate	0.41	15	73	US EPA RSL
DOE-4	06/09/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-1	06/22/2022	Dichlorodifluoromethane	0.14	2.3	100	US EPA RSL
DOE-1	06/22/2022	Hexane, n-	0.17	1.3	730	US EPA RSL
DOE-1	06/22/2022	N-heptane	0.20	0.86	420	US EPA RSL
DOE-1	06/22/2022	Toluene	0.10	0.95	310	DTSC HHRA NOTE 3
DOE-1	06/22/2022	Trichlorofluoromethane	0.13	1.1	1300	DTSC HHRA NOTE 3
DOE-1	06/22/2022	Dichlorodifluoromethane	0.13	2.3	100	US EPA RSL
DOE-1	06/22/2022	Ethyl acetate	0.41	3.7	73	US EPA RSL
DOE-1	06/22/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-2	06/22/2022	Dichlorodifluoromethane	0.13	2.2	100	US EPA RSL
DOE-2	06/22/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-3	06/22/2022	Dichlorodifluoromethane	0.13	2.3	100	US EPA RSL
DOE-3	06/22/2022	Ethyl acetate	0.43	10	73	US EPA RSL
DOE-3	06/22/2022	Trichlorofluoromethane	0.12	1.2	1300	DTSC HHRA NOTE 3
DOE-4	06/22/2022	Dichlorodifluoromethane	0.12	2.4	100	US EPA RSL

J = estimated value

V = The continuing calibration verification standard was outside (biased low) the specified limits for this compound

APPENDIX C

Radionuclide Results

(This page intentionally left blank)

Sample Collection Date	Result Alpha (mCi/mL)	MDC – Alpha (mCi/mL)	Result Beta (mCi/mL)	MDC – Beta (mCi/mL)				
	Sample location DOE-1							
4/1/2022	-2.43E-15	7.37E-15	1.90E-14	2.99E-14				
4/4/2022	1.40E-17	7.37E-15	3.40E-14	2.99E-14				
4/8/2022	1.80E-15	5.41E-15	2.74E-14	2.19E-14				
4/11/2022	-2.96E-15	6.97E-15	3.94E-14	2.82E-14				
4/15/2022	-1.80E-15	5.47E-15	1.87E-14	2.22E-14				
4/18/2022	-2.33E-15	7.07E-15	-2.24E-15	2.86E-14				
4/22/2022	-1.52E-15	5.39E-15	1.84E-14	2.18E-14				
4/25/2022	-2.97E-15	6.99E-15	5.00E-14	2.83E-14				
4/29/2022	-5.05E-16	5.44E-15	2.08E-14	2.21E-14				
5/2/2022	3.76E-15	6.59E-15	4.04E-14	2.84E-14				
5/6/2022	3.66E-15	5.07E-15	2.58E-14	2.19E-14				
5/9/2022	-1.83E-15	6.54E-15	3.19E-15	2.82E-14				
5/13/2022	-1.50E-16	5.00E-15	9.82E-15	2.16E-14				
5/16/2022	1.40E-15	6.37E-15	3.71E-14	2.75E-14				
5/20/2022	-1.40E-15	4.98E-15	2.45E-14	2.15E-14				
5/23/2022	2.47E-15	6.67E-15	1.17E-14	2.88E-14				
5/27/2022	-1.94E-15	5.09E-15	5.32E-14	2.20E-14				
5/31/2022	-4.05E-16	5.06E-15	1.24E-14	2.19E-14				
6/3/2022	1.88E-15	6.88E-15	2.33E-14	2.99E-14				
6/6/2022	4.55E-16	6.58E-15	1.49E-14	2.86E-14				
6/10/2022	6.08E-16	5.06E-15	2.33E-14	2.20E-14				
6/13/2022	-3.54E-15	6.53E-15	4.40E-14	2.84E-14				
6/17/2022	-9.51E-16	5.13E-15	1.30E-14	2.23E-14				
6/20/2022	1.22E-16	6.67E-15	1.76E-14	2.90E-14				
6/24/2022	5.23E-15	5.05E-15	3.81E-14	2.19E-14				
6/27/2022	1.51E-15	6.79E-15	6.76E-14	2.95E-14				

Table C-1	Gross alpha	and gross beta	a air samnle	results for	air samplers
	Gross aipna		an sample	1030101	an samplers.

Sample Collection Date	Result Alpha (mCi/mL)	MDC – Alpha (mCi/mL)	Result Beta (mCi/mL)	MDC – Beta (mCi/mL)
	San	nple location DOE	-2	
4/1/2022	-1.38E-15	7.38E-15	-5.28E-15	2.99E-14
4/4/2022	-1.38E-15	7.37E-15	2.23E-14	2.99E-14
4/8/2022	2.67E-16	5.41E-15	5.52E-14	2.19E-14
4/11/2022	-1.99E-15	7.04E-15	6.61E-14	2.85E-14
4/15/2022	7.88E-16	5.48E-15	3.81E-14	2.22E-14
4/18/2022	1.34E-17	7.07E-15	2.73E-14	2.86E-14
4/22/2022	-1.01E-15	5.39E-15	2.54E-14	2.18E-14
4/25/2022	2.66E-15	6.99E-15	1.48E-14	2.83E-14
4/29/2022	-5.05E-16	5.44E-15	3.68E-14	2.21E-14
5/2/2022	6.07E-15	6.59E-15	3.42E-14	2.84E-14
5/6/2022	8.63E-16	5.07E-15	3.19E-14	2.19E-14
5/9/2022	3.08E-15	6.54E-15	6.32E-14	2.82E-14
5/13/2022	-1.15E-15	4.99E-15	4.09E-14	2.16E-14
5/16/2022	-5.11E-16	6.38E-15	6.20E-14	2.75E-14
5/20/2022	3.49E-16	4.98E-15	3.58E-14	2.15E-14
5/23/2022	-2.54E-15	6.67E-15	2.93E-14	2.88E-14
5/27/2022	1.63E-15	5.09E-15	2.45E-14	2.20E-14
5/31/2022	-2.69E-15	5.06E-15	2.20E-14	2.19E-14
6/3/2022	-9.23E-16	6.87E-15	2.98E-14	2.99E-14
6/6/2022	1.79E-15	6.56E-15	2.62E-15	2.85E-14
6/10/2022	5.00E-15	5.08E-15	2.26E-14	2.21E-14
6/13/2022	4.52E-16	6.53E-15	6.95E-14	2.84E-14
6/17/2022	-4.28E-16	5.13E-15	4.28E-14	2.23E-14
6/20/2022	-1.58E-15	6.67E-15	3.08E-14	2.90E-14
6/24/2022	1.89E-15	5.05E-15	4.29E-14	2.20E-14
6/27/2022	4.70E-16	6.79E-15	4.04E-14	2.95E-14

Sample Collection Date	Result Alpha (mCi/mL)	MDC – Alpha (mCi/mL)	Result Beta (mCi/mL)	MDC – Beta (mCi/mL)
	San	nple location DOE	-3	
4/1/2022	-1.73E-15	7.38E-15	-1.63E-14	2.99E-14
4/4/2022	3.62E-16	7.36E-15	4.50E-14	2.98E-14
4/8/2022	3.60E-15	5.42E-15	4.06E-14	2.20E-14
4/11/2022	1.32E-17	6.95E-15	2.65E-14	2.82E-14
4/15/2022	-1.03E-15	5.48E-15	1.60E-14	2.22E-14
4/18/2022	-3.67E-15	7.07E-15	-1.60E-14	2.86E-14
4/22/2022	-2.76E-15	5.85E-15	1.62E-14	2.37E-14
4/25/2022	-4.29E-15	6.99E-15	1.24E-14	2.83E-14
4/29/2022	-1.02E-15	5.44E-15	3.46E-14	2.21E-14
5/2/2022	2.44E-15	6.58E-15	1.26E-14	2.84E-14
5/6/2022	3.56E-16	5.07E-15	5.04E-14	2.19E-14
5/9/2022	2.09E-15	6.54E-15	4.49E-14	2.82E-14
5/13/2022	3.56E-16	5.08E-15	1.12E-14	2.16E-14
5/16/2022	-1.51E-15	6.54E-15	3.44E-14	2.78E-14
5/20/2022	1.12E-15	5.09E-15	9.59E-15	2.16E-14
5/23/2022	1.50E-15	6.80E-15	4.68E-15	2.89E-14
5/27/2022	-1.71E-15	5.19E-15	3.57E-14	2.21E-14
5/31/2022	-6.73E-16	5.17E-15	1.06E-14	2.20E-14
6/3/2022	6.06E-15	6.86E-15	2.14E-14	2.98E-14
6/6/2022	-1.55E-15	6.57E-15	-8.94E-15	2.86E-14
6/10/2022	1.90E-15	5.07E-15	2.21E-14	2.21E-14
6/13/2022	7.85E-16	6.53E-15	7.78E-14	2.84E-14
6/17/2022	1.14E-15	5.13E-15	5.05E-14	2.23E-14
6/20/2022	1.22E-16	6.67E-15	1.95E-15	2.90E-14
6/24/2022	9.25E-17	5.05E-15	4.67E-14	2.19E-14
6/27/2022	-1.26E-15	6.79E-15	3.24E-14	2.95E-14

Sample Collection Date	Result Alpha (mCi/mL)	MDC – Alpha (mCi/mL)	Result Beta (mCi/mL)	MDC – Beta (mCi/mL)				
	Sample location DOE-4							
4/1/2022	2.46E-15	7.38E-15	-1.60E-15	2.99E-14				
4/4/2022	3.63E-16	7.36E-15	1.38E-14	2.98E-14				
4/8/2022	1.03E-17	5.42E-15	3.50E-14	2.20E-14				
4/11/2022	-3.28E-15	6.95E-15	4.11E-14	2.82E-14				
4/15/2022	-2.49E-16	5.48E-15	2.80E-14	2.22E-14				
4/18/2022	1.35E-15	7.07E-15	-8.31E-16	2.86E-14				
4/22/2022	1.02E-17	5.39E-15	4.07E-14	2.18E-14				
4/25/2022	-1.64E-15	6.99E-15	4.05E-15	2.83E-14				
4/29/2022	-2.31E-15	5.44E-15	4.33E-14	2.21E-14				
5/2/2022	2.83E-15	6.72E-15	2.81E-14	2.86E-14				
5/6/2022	2.96E-15	5.18E-15	4.91E-14	2.20E-14				
5/9/2022	1.34E-16	6.67E-15	2.96E-14	2.84E-14				
5/13/2022	2.13E-15	5.08E-15	7.46E-15	2.16E-14				
5/16/2022	2.10E-15	6.54E-15	5.42E-14	2.78E-14				
5/20/2022	2.39E-15	5.09E-15	1.09E-14	2.16E-14				
5/23/2022	-5.45E-16	6.80E-15	4.71E-14	2.89E-14				
5/27/2022	1.40E-15	5.19E-15	3.27E-14	2.21E-14				
5/31/2022	8.81E-16	5.18E-15	2.70E-14	2.20E-14				
6/3/2022	-1.62E-15	6.85E-15	9.67E-15	2.98E-14				
6/6/2022	4.14E-15	6.57E-15	1.87E-14	2.86E-14				
6/10/2022	-6.82E-16	5.07E-15	2.39E-14	2.21E-14				
6/13/2022	1.20E-16	6.53E-15	4.51E-14	2.84E-14				
6/17/2022	3.55E-16	5.13E-15	1.82E-14	2.23E-14				
6/20/2022	2.50E-15	6.68E-15	6.58E-15	2.90E-14				
6/24/2022	6.06E-16	5.05E-15	2.68E-14	2.19E-14				
6/27/2022	-5.67E-16	6.79E-15	7.12E-14	2.95E-14				

Note: Some values are negative after background subtraction.

Table C-2. Individual radionucil	Result	MDC	Data	Airborne Concentration
Radionuclide	(pCi/sample)	(pCi/sample)	Qualifier	(μCi/mL)
Loc	cation DOE-1 – Air	volume/sample	= 9.72E+08	
Cesium-137	-1.85	5.44	UU	-1.903E-15
Strontium-90	1.79	8.18	UU	1.842E-15
Cobalt-60	0.268	8.08	UU	2.757E-16
Potassium-40	143	53.3		1.471E-13
Beryllium-7	106	58.4		1.091E-13
Plutonium-238	0.0614	0.271	U UJ	6.317E-17
Polonium-210	6.1	0.188	J	6.276E-15
Plutonium-241	18.4	29.5	U UJ	1.893E-14
Thorium-230	1.37	0.667	UJ	1.409E-15
Thorium-228	0.58	0.731	UU	5.967E-16
Actinium-228	-6.48	30.6	UU	-6.667E-15
Americium-241	0.133	0.223	UU	1.368E-16
Plutonium-239	-0.0322	0.344	U UJ	-3.313E-17
Ra-228 - total	-4.82	15.2	UU	-4.959E-15
Radium-226, -228 combined	4.02	4.65	UU	4.136E-15
Thorium-232	0.846	0.317	UJ	8.704E-16
Uranium-238	0.958	0.173	UJ	9.856E-16
Uranium-233/234	0.986	0.216	UJ	1.014E-15
Uranium-235/236	0.121	0.214	UU	1.245E-16
Loc	cation DOE-2 – Air	volume/sample	= 9.72E+08	
Cesium-137	1.4	7.61	UU	1.440E-15
Strontium-90	2.79	7.29	UU	2.870E-15
Cobalt-60	4.19	9.21	UU	4.311E-15
Potassium-40	128	85.1		1.317E-13
Beryllium-7	86	70.6	UI UJ	8.848E-14
Plutonium-238	-0.0168	0.26	U UJ	-1.728E-17
Polonium-210	6.37	0.257	J	6.553E-15
Plutonium-241	22	34.5	UUJ	2.263E-14
Thorium-230	1.36	0.568	IJ	1.399E-15
Thorium-228	0.413	0.42	UU	4.249E-16
Actinium-228	5.37	31.6	UU	5.525E-15
Americium-241	0.0405	0.361	UU	4.167E-17
Plutonium-239	-0.0165	0.191	UUJ	-1.698E-17
Ra-228 - total	2.56	12.3	UU	2.634E-15
Radium-226, -228 combined	-1.99	5.37	UU	-2.047E-15
Thorium-232	0.742	0.243	UJ	7.634E-16
Uranium-238	0.458	0.242	UJ	4.712E-16

Table C-2. Individual radionuclide analysis for the composite filter samples.

Radionuclide	Result	MDC	Data	Airborne Concentration
Radionucide	(pCi/sample)	(pCi/sample)	Qualifier	(μCi/mL)
Uranium-233/234	0.855	0.259	UJ	8.796E-16
Uranium-235/236	0.0148	0.175	UU	1.523E-17
Lo	cation DOE-3 – Air	volume/sample	= 9.69E+08	
Cesium-137	0.659	7.77	UU	6.801E-16
Strontium-90	4	7.45	UU	4.128E-15
Cobalt-60	-0.246	7.88	UU	-2.539E-16
Potassium-40	84.4	76.9		8.710E-14
Beryllium-7	136	66.9		1.404E-13
Plutonium-238	0.0319	0.227	UU	3.292E-17
Polonium-210	5.65	0.318	J	5.831E-15
Plutonium-241	3.54	37.9	UU	3.653E-15
Thorium-230	0.994	0.729	UJ	1.026E-15
Thorium-228	0.866	0.704	UJ	8.937E-16
Actinium-228	-15.7	32	UU	-1.620E-14
Americium-241	-0.0819	0.505	UU	-8.452E-17
Plutonium-239	0.0319	0.227	UU	3.292E-17
Ra-228 - total	-7.09	16.4	UU	-7.317E-15
Radium-226, -228 combined	6.08	6.79	UU	6.275E-15
Thorium-232	0.538	0.506	UJ	5.552E-16
Uranium-238	0.875	0.295	UJ	9.030E-16
Uranium-233/234	0.619	0.343	J	6.388E-16
Uranium-235/236	0.0933	0.315	UU	9.628E-17
Loc	cation DOE-4 – Air	volume/sample	= 9.72E+08	
Cesium-137	-1.5	5.95	UU	-1.543E-15
Strontium-90	4.77	6.75	UU	4.907E-15
Cobalt-60	1.37	7.05	UU	1.409E-15
Potassium-40	163	63.8		1.677E-13
Beryllium-7	90.3	69.4		9.290E-14
Plutonium-238	-0.0186	0.287	U UJ	-1.914E-17
Polonium-210	6.07	0.131	J	6.245E-15
Plutonium-241	17.8	42.4	U UJ	1.831E-14
Thorium-230	1.36	0.5	UJ	1.399E-15
Thorium-228	0.535	0.6	UU	5.504E-16
Actinium-228	-33.3	29.1	UU	-3.426E-14
Americium-241	0.0725	0.109	UU	7.459E-17
Plutonium-239	-0.0185	0.287	U UJ	-1.903E-17
Ra-228 - total	1.58	8.92	UU	1.626E-15
Radium-226, -228 combined	5.04	3.91		5.185E-15
Thorium-232	0.282	0.421	UU	2.901E-16

Radionuclide	Result (pCi/sample)	MDC (pCi/sample)	Data Qualifier	Airborne Concentration (μCi/mL)
Uranium-238	0.405	0.328	UJ	4.167E-16
Uranium-233/234	0.866	0.294	UJ	8.909E-16
Uranium-235/236	-0.000972	0.325	UU	-1.000E-18

Note - Data Qualifier meanings:

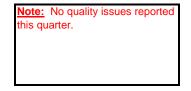
UU – Analyte was analyzed for but not detected and is qualified as a non-detect.

U – The analyte was analyzed for, but not detected or is qualified as non-detect because of blank contamination.

J – The analyte was positively identified; the quantitation is estimated because of discrepancies in meeting certain analyte-specific QC criteria.

UJ – The analyte was not detected; however, the result is estimated because of discrepancies in meeting certain analyte-specific QC criteria.

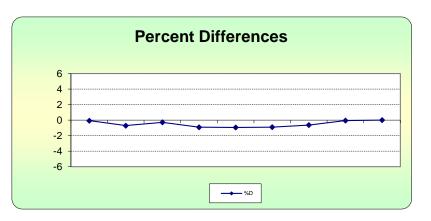
(This page intentionally left blank)


APPENDIX D

PM₁₀ Monthly Audit Reports and Flow Verification Results

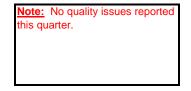
(This page intentionally left blank)

ETEC	C Site: D	OE-1				Pol	lutant ty	ype: P	M10		Bias (%)	
							2		2			
Quarter	E-BAM	Date	Meas Val (Y)	Audit Val (X)	d (Eqn. 1)	Percentile	ď	d	d ²			-
17	X16067	4/26/2022	14.00	14.01	-0.071		0.005	0.071	0.005		n ∑ d	"AB" (Eqn 4)
			16.70	16.82	-0.713	<u>25th</u>	0.509	0.713	0.509	9	9 4.543	0.505
			17.50	17.55	-0.285	-0.906	0.081	0.285	0.081	n	·1 ∑ d ²	"AS" (Eqn 5)
17	X16067	5/19/2022	14.00	14.13	-0.920		0.846	0.920	0.846	8	3.575	0.400
			16.70	16.86	-0.949	<u>75th</u>	0.901	0.949	0.901			_
			17.50	17.66	-0.906	-0.071	0.821	0.906	0.821		Bias (%) (Eqn 3)	Both Signs Positive
17	X16067	6/24/2022	14.00	14.09	-0.639		0.408	0.639	0.408		0.75	FALSE
			16.70	16.71	-0.060		0.004	0.060	0.004		Signed Bias (%)	Both Signs Negative
			17.50	17.50	0.000		0.000	0.000	0.000		-0.75	TRUE


 Reference:
 U.S. EPA, Ambient Monitoring Technology Information Center (AMTIC)

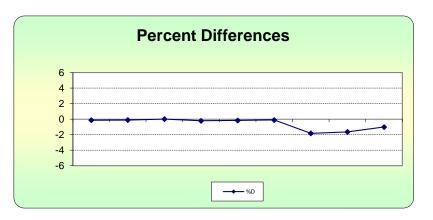
 Quality Indicator Assessment Reports

 Data Assessment Statistical Calculator - Software to calculate precision and bias statistics


 MS EXCEL filename - "11/3/2017 (dasc)11_3_17.xls)"

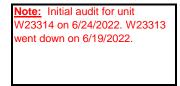
 https://www3.epa.gov/tnn/amtic/gareport.html

ETEC	C Site: D	OE-2				Pol	lutant ty	pe: P	M10		Bias	(%)
Quarter	E-BAM	Date	Meas Val (Y)	Audit Val (X)	d (Eqn. 1)	Percentile	d²	d	d ²			
17	Y12096	4/26/2022	14.00	14.02	-0.143		0.020	0.143	0.020	r	∑∣d∣	"AB" (Eqn 4)
			16.70	16.72	-0.120	<u>25th</u>	0.014	0.120	0.014	g	5.260	0.584
			17.50	17.50	0.000	-1.018	0.000	0.000	0.000	n-	1 ∑ d ²	"AS" (Eqn 5)
17	Y12096	5/19/2022	14.00	14.03	-0.214		0.046	0.214	0.046	8	7.206	0.719
			16.70	16.73	-0.179	<u>75th</u>	0.032	0.179	0.032			_
			17.50	17.52	-0.114	-0.120	0.013	0.114	0.013		Bias (%) (Eqn 3)	Both Signs Positive
17	Y12096	6/24/2022	14.00	14.26	-1.823		3.324	1.823	3.324		1.03	FALSE
			16.70	16.98	-1.649		2.719	1.649	2.719		Signed Bias (%)	Both Signs Negative
			17.50	17.68	-1.018		1.037	1.018	1.037		-1.03	TRUE


 Reference:
 U.S. EPA, Ambient Monitoring Technology Information Center (AMTIC)

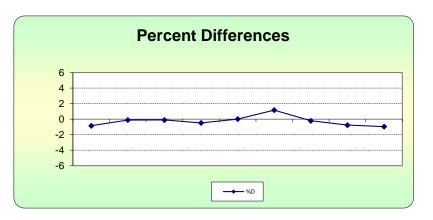
 Quality Indicator Assessment Reports

 Data Assessment Statistical Calculator - Software to calculate precision and bias statistics


 MS EXCEL filename - "11/3/2017 (dasc)11_3_17.xls)"

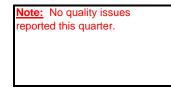
 https://www3.epa.gov/tnn/amtic/gareport.html

ETE	C Site: D	OE-3				Pol	lutant ty	pe: P	M10		Bias	(%)
Quarter	E-BAM	Date	Meas Val (Y)	Audit Val (X)	d (Eqn. 1)	Percentile	ď	d	d ²			
17	W23313	4/26/2022	14.00	14.12	,		0.722	0.850	0.722	r	∑∣d∣	"AB" (Eqn 4)
			16.70	16.72	-0.120	<u>25th</u>	0.014	0.120	0.014	ç	-	0.521
			17.50	17.52	-0.114	-0.772	0.013	0.114	0.013	n	1 $\sum \mathbf{d} ^2$	"AS" (Eqn 5)
17	W23313	5/19/2022	14.00	14.07	-0.498		0.248	0.498	0.248	8	3.902	0.428
			16.70	16.70	0.000	<u>75th</u>	0.000	0.000	0.000			_
			17.50	17.30	1.156	-0.114	1.336	1.156	1.336		Bias (%) (Eqn 3)	Both Signs Positive
17	W23314	6/24/2022	14.00	14.03	-0.214		0.046	0.214	0.046		0.79	FALSE
			16.70	16.83	-0.772		0.597	0.772	0.597		Signed Bias (%)	Both Signs Negative
			17.50	17.67	-0.962		0.926	0.962	0.926		-0.79	TRUE


 Reference:
 U.S. EPA, Ambient Monitoring Technology Information Center (AMTIC)

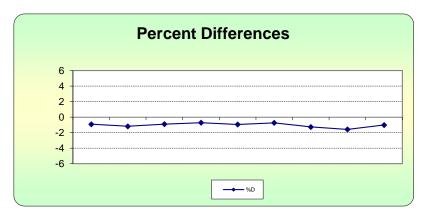
 Quality Indicator Assessment Reports

 Data Assessment Statistical Calculator - Software to calculate precision and bias statistics


 MS EXCEL filename - "11/3/2017 (dasc)11_3_17.xls)"

 https://www3.epa.gov/tnn/amtic/gareport.html

ETE	C Site: D	OE-4				Pol	lutant ty	pe: P	M10		Bias	(%)
Quarter	E-BAM	Date	Meas Val (Y)	Audit Val (X)	d (Eqn. 1)	Percentile	ď	d	d ²			
17	W23310	4/26/2022	14.00		,		0.846	0.920	0.846	Г	n ∑ d	"AB" (Eqn 4)
			16.70	16.90	-1.183	<u>25th</u>	1.401	1.183	1.401		9.284	1.032
			17.50	17.66	-0.906	-1.183	0.821	0.906	0.821	n	-1 Σ d ²	"AS" (Eqn 5)
17	W23310	5/19/2022	14.00	14.10	-0.709		0.503	0.709	0.503		3 10.194	0.278
			16.70	16.86	-0.949	<u>75th</u>	0.901	0.949	0.901			_
			17.50	17.63	-0.737	-0.906	0.544	0.737	0.544		Bias (%) (Eqn 3)	Both Signs Positive
17	W23310	6/24/2022	14.00	14.18	-1.269		1.611	1.269	1.611		1.2	FALSE
			16.70	16.97	-1.591		2.531	1.591	2.531		Signed Bias (%)	Both Signs Negative
			17.50	17.68	-1.018		1.037	1.018	1.037		-1.2	TRUE


 Reference:
 U.S. EPA, Ambient Monitoring Technology Information Center (AMTIC)

 Quality Indicator Assessment Reports

 Data Assessment Statistical Calculator - Software to calculate precision and bias statistics

 MS EXCEL filename - "11/3/2017 (dasc)11_3_17.x/s)"

 https://www3.epa.gov/tnn/amtic/gareport.html

E-BAM Monthly Audit and Maintenance

Audit Date: 4/2	1 6/2	022			Serial # Audited By	X1606	1216	ford		
	l			Flo	w Audit	1.0.0	Sent	101-1		
Flow Audit Device Mo	odel:	BGI Del	ta Cal DC			58047	Calibrat	ion Date:	3/23/2	022
Leak Check Value:		as fo	ound: O	.5		a	s left:	2.5		
				E-BAM	Ref. S	Std.		E-BAM	Ref	. Std.
Ambient Temperatur	e:	as fou	ind: 2	1.0	°c 21.5	°c as l	eft: Z		°C 21.5	
Barometric Pressure:		as fou	ind: 7	13.6 mm	Hg 713.	SmmHg as I	eft: 7/	3.6 mm		
16.7 lpm Flow Rate	e	as fou	ind: 11	0.7 1	pm 16.8			2	om 16.8	
14.0 lpm Flow Rate	2	as fou			pm 14.0	1 Ipm as I			om 14.0	
17.5 lpm Flow Rate	9	as fou	ind: เา	,5 1	pm 17.55	5 Ipm as I	eft: 1	7.5 lp	m 17,5	5 lpr
			Mecha	nical Aud	its (Y = Yes	N = No)				1997 - P
		Samp	ole nozzle	e clean:	as found	Y a	s left 👌	Y		
	Т	ape sup	port vane	e clean:	as found	Y a:	s left	Ý		
			ool cover	-	as found	Y a	s left	Y		
	P	M10 pai	rticle trap	clean:	as found	Y a	s left	<u>r</u>		
) drip jar		as found	Y a	s left	Y		
		PM10 b	ug scree	n clear:	as found	Y a	s left	Y		
Manual	Span M	Membra	ne Test				Pump	Test		
Expected Span Ma	ss (mg	/cm2) : (0.950	>	Flow Rat	e Vacu	um	Qua	lity Categ	ory
Expected Span Ma Measured Span Ma	and the second se				Flow Rat 14.0 - 15				lity Categ Marginal	
	ss (mg	/cm2) :		2			lue			
Measured Span Ma	ss (mg ce (mg	/cm2) : /cm2) :	0.936	, 4	14.0 - 15 (lpm)	.0 Val	lue g)	Good /	Marginal	
Measured Span Ma Differen	ss (mg ce (mg	/cm2) : /cm2) :	0.936	, 4 %	14.0 - 15	.0 Val (H 434	lue g)		Marginal	
Measured Span Ma Differen % Difference	ss (mg ce (mg	/cm2) : /cm2) : or Fail:	0.93(0.01 1.48 Set	, 4 %	14.0 - 15 (lpm)	.0 Val (H 434 alues	lue g) . 3	Good /	Marginal	/ Poor
Measured Span Ma Difference % Difference Parameter Exp	ss (mg ce (mg /@ass	/cm2) : /cm2) : or Fail:	0.93(0.01 1.48 Set Par	4 % tup and C	14.0 - 15 (lpm) 14.8 alibration Va Expected	.0 Val (H 434 alues	lue g) . 3 Para	Good / Mava	Marginal	/ Poor
Measured Span Ma Difference % Difference Parameter Ex Clock Ø Location	ss (mg ce (mg /@as pected 831	/cm2) : /cm2) : or Fail: Found	0,93(0.01 (.48 Set Par	tup and C rameter nalog Mo Baud Ra	14.0 - 15 (lpm) 14.3 alibration Va Expected de Hourly ite 9600	.0 Val (H 434 alues Found Hourly Gb05	lue g) . 3 Para Flov Restar	Good / Mava meter Type t Voltage	Marginal Small Expected Actual 12.5 v	/ Poor Found
Measured Span Ma Difference % Difference Parameter Ex Clock Ø Location Tape Advance 2	ss (mg ce (mg /@ss pected 831 1 4 hrs	/cm2) : /cm2) : or Fail: Found 0831 1 24 hrs	0,93(0.01 1.48 Set Par	y 2 tup and C rameter nalog Mo	14.0 - 15 (lpm) 14.3 alibration Va Expected de Hourly ite 9600	.0 Val (H 434 alues Found Hourly	lue g) . 3 Para Flov Restar	Good / Mava meter v Type	Marginal Jma Expected Actual	/ Poor Found Act
Measured Span Ma Difference % Difference Parameter Exp Clock Ø Location Tape Advance 2 Realtime Avg 60	ss (mg ce (mg /@& pected 831 1 4 hrs 0 mins	/cm2) : /cm2) : or Fail: Found 0831 1 24 hrs 60min	0,93(0.01 (.48 Set Par Ai	tup and C rameter nalog Mor Baud Ra RH Setpoi a T Setpoi	14.0 - 15 (lpm) 14.3 alibration Va Expected de Hourly ite 9600 int 45% int 15 C	.0 Val (H 434 alues Found Hourly 9603 45% 15C°	lue g) . 3 Para Flov Restar Std Co	Good / Mava meter v Type t Voltage ond Temp DAC	Marginal Expected Actual 12.5 v 25 C 8.0 v	/ Poor Found Act (2.5v 25C 8.0 v
Measured Span Ma Difference % Difference Parameter Ex Clock 0 Location Tape Advance 2 Realtime Avg 60 Machine Type P	ss (mg ce (mg /eas pected 831 1 4 hrs 0 mins M-10	/cm2) : /cm2) : or Fail: Found 08.31 1 24 hrs 60 min Pp1-10	0,93(0.01 1.48 Set Par Ai Ai As Delta	tup and C rameter nalog Mo Baud Ra RH Setpoi a T Setpoi RH Conti	14.0 - 15 (lpm) 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 15	.0 Val (H 434 alues Found Hourly 9603 45% 15C°	Para Flov Restar Std Cc RH C	Good / Mave meter v Type t Voltage ond Temp OAC onnect	Expected Actual 12.5 v 25 C 8.0 v No	/ Poor Found Act (Z.Sy 25C 8.0 v NO
Measured Span Ma Difference % Difference Parameter Ex Clock 0 Location Tape Advance 2 Realtime Avg 60 Machine Type P	ss (mg ce (mg /@& pected 831 1 4 hrs 0 mins	/cm2) : /cm2) : or Fail: Found 0831 1 24 hrs 60min	0,93(0.01 (.48 Set Par Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar	tup and C rameter nalog Mo Baud Ra RH Setpoi a T Setpoi RH Contro ow Setpoi	14.0 - 15 (lpm) 14.3 alibration Va Expected de Hourly ite 9600 int 45% int 15 C rol On int 16.7	.0 Val (H 434 alues Found Hourly 4603 45% 15C 0n 16.7	Para Flov Restar Std Cc RH C	Good / Mava meter v Type t Voltage ond Temp DAC	Marginal Expected Actual 12.5 v 25 C 8.0 v	/ Poor Found Act (2.5v 25C 8.0v NO
Measured Span Ma Difference % Difference Parameter Exp Clock Ø Location Tape Advance 2 Realtime Avg 60 Machine Type P Analog FS	ss (mg ce (mg /eas pected 831 1 4 hrs 0 mins M-10	/cm2) : /cm2) : or Fail: Found 08.31 1 24 hrs 60 min Pp1-10	0,93(0,01 (.48 Set Par Ar Ar Ar Delta C C Last	tup and C rameter nalog Mor Baud Ra RH Setpoi a T Setpoi RH Contr ow Setpoi 6 Errors i	14.0 - 15 (lpm) 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 15	.0 Val (H 434 alues Found Hourly 9600 45% 15C° 0n 16.7	Para Flov Restar Std Cc RH C	Good / Mave meter v Type t Voltage ond Temp OAC onnect	Marginal Expected Actual 12.5 v 25 C 8.0 v No Off	/ Poor Found Act (2.5v 25C 8.0v NO 055
Measured Span Ma Difference % Difference Parameter Ex Clock 0 Location Tape Advance 2 Realtime Avg 60 Machine Type P Analog FS	ss (mg ce (mg /eas pected 831 1 4 hrs 0 mins M-10 1.0 v	/cm2) : /cm2) : or Fail: Found 0831 1 24 hrs 60m Ppn-10 1.0 v	0,93(0,01 (.48 Set Par Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar	tup and C rameter nalog Mo Baud Ra RH Setpoi a T Setpoi RH Contr ow Setpoi 6 Errors i Time	14.0 - 15 (lpm) 14.3 alibration Va Expected de Hourly ite 9600 int 45% int 15 C rol On int 16.7 n E-BAM Err	.0 Val (H 434 alues Found Hourly 4603 45% 15C 0n 16.7	Para Flov Restar Std Cc RH C	Good / Mave meter v Type t Voltage ond Temp OAC onnect	Expected Actual 12.5 v 25 C 8.0 v No	/ Poor Found Act (2.5v 25C 8.0v
Measured Span Ma Difference % Difference Parameter Exp Clock Ø Location Tape Advance 2 Realtime Avg 60 Machine Type P Analog FS	ss (mg ce (mg /eas pected 831 1 4 hrs 0 mins M-10 1.0 v	/cm2) : /cm2) : or Fail: Found 0831 1 24 hrs 60min Ppn-10 1.0 v	0,93(0,01 (.48 Set Par Ar Ar Ar Delta C C Last	tup and C rameter nalog Mo Baud Ra RH Setpoi a T Setpoi RH Contr ow Setpoi 6 Errors i Time	14.0 - 15 (lpm) 14.3 alibration Va Expected de Hourly te 9600 int 45% int 15 C rol On int 16.7 n E-BAM Err	.0 Val (H 434 alues Found Hourly 9600 45% 15C° 0n 16.7	Para Flov Restar Std Cc RH C	Good / Mave meter v Type t Voltage ond Temp OAC onnect	Marginal Expected Actual 12.5 v 25 C 8.0 v No Off	/ Poor Found Act (2.5v 25C 8.0v NO 055
Measured Span Ma Difference % Difference Parameter Ex Clock 0 Location Tape Advance 2 Realtime Avg 60 Machine Type P Analog FS	ss (mg ce (mg /eas pected 831 1 4 hrs 0 mins M-10 1.0 v	/cm2) : /cm2) : or Fail: Found 0831 1 24 hrs 60min Ppn-10 1.0 v	0,93(0,01 (.48 Set Par Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar	tup and C rameter nalog Mo Baud Ra RH Setpoi a T Setpoi RH Contr ow Setpoi 6 Errors i Time	14.0 - 15 (lpm) 14.3 alibration Va Expected de Hourly ite 9600 int 45% int 15 C rol On int 16.7 n E-BAM Err	.0 Val (H 434 alues Found Hourly 9600 45% 15C° 0n 16.7	Para Flov Restar Std Cc RH C	Good / Mave meter v Type t Voltage ond Temp OAC onnect	Marginal Expected Actual 12.5 v 25 C 8.0 v No Off	/ Poor Found Act (2.5v 25C 8.0v NO 055

E-BAM Monthly Audit and Maintenance Station # DOE-1 Serial # XLOGT Audit Date: 2022 Audited By: T.S. 11), 11 ford Flow Audit Flow Audit Device Model: BGI Delta Cal DC-1A Serial No: 158047 Calibration Date: 3/23/2022 Leak Check Value: as found: D.S as left: 0.5 E-BAM Ref. Std. E-BAM Ref. Std. Ambient Temperature: as found: 20.9 °c °c as left: 20.9 °c °c 20. 20.1 **Barometric Pressure:** as found: 713. Ø mmHg as left: mmHg 3 713, 1 mmHg 713 mmHg 16.7 lpm Flow Rate as found: 7 86 Ipm as left: Ipm 6.7 6.86 lpm Ipm 14.0 lpm Flow Rate as found: 0 Ipm as left: 14.0 14,13 Ipm 13 Ipm Ipm 17.5 lpm Flow Rate as found: 17.66 17.5 Ipm 66 Ipm as left: 17.5 Ipm Ipm Mechanical Audits (Y = Yes N = No) Sample nozzle clean: as found as left Tape support vane clean: as found as left Tape spool covers tight: as found as left PM10 particle trap clean: as found as left PM10 drip jar empty: as found as left PM10 bug screen clear: as found as left Manual Span Membrane Test **Pump Test** Expected Span Mass (mg/cm2) : 0 950 Flow Rate Vacuum **Quality Category** Measured Span Mass (mg/cm2) : 0,949 14.0 - 15.0 Value Good / Marginal / Poor Difference (mg/cm2): 0 . 001 (lpm) (Hg) 436.8 % Difference / Pass or Fail: 0.11% 15.0 Marginal Setup and Calibration Values Parameter Expected Found Parameter Expected Found Parameter Expected Found 105 Clock 1051 Analog Mode Hourly Flow Type Actual Houry Location **Baud Rate** 9600 12.5 v 9600 **Restart Voltage** 1250 **Tape Advance** 24 hrs **RH** Setpoint 45% Std Cond Temp 4 hrs 45% 25 C 25C Realtime Avg 60 mins **Delta T Setpoint** 15 C DAC 60 min 8.0 v 8.01 150 Machine Type **PM-10 RH** Control On **RH** Connect No PM-10 AN Analog FS Flow Setpoint 1.0 v 16.7 Off **Pump Protect** 1.01 16:1 Last 6 Errors in E-BAM Error Log Error Date Time Error Date Time new messages C/19/2 4 059 2 5 3 6 Audit Notes:

E-BAM Monthly Audit and Maintenance Station # DOE - \ X16067 Serial # Audited By : T. Stewart Williford Audit Date: 2022 Flow Audit **Calibration Date:** 3/23/2022 Serial No: 158047 Flow Audit Device Model: BGI Delta Cal DC-1A as left: 0.3Leak Check Value: as found: Ref. Std. E-BAM Ref. Std. E-BAM °C °C 31.9 °C as found: 32,6 °c 21 9 as left: 32.10 Ambient Temperature: mmHg as left: 711.0 **Barometric Pressure:** as found: 108. mmHg 708.1 mmHg mmHg Ipm as left: 110.7 as found: Ipm 16.71 Ipm 16.7 lpm Flow Rate 16.7 lpm 09 14.09 Ipm as left: lpm 14.0 lpm Flow Rate as found: 14.0 lpm 14.0 Ipm Ipm as left: 7.5 lpm Ipm 17.5 lpm Flow Rate as found: 7.5 lpm Mechanical Audits (Y = Yes N = No) as found as left Sample nozzle clean: as left as found Tape support vane clean: as found as left Tape spool covers tight: as found as left PM10 particle trap clean: PM10 drip jar empty: as found as left PM10 bug screen clear: as found as left Pump Test Manual Span Membrane Test Vacuum **Quality Category** Flow Rate Expected Span Mass (mg/cm2): 0,89 14.0 - 15.0 Value Good / Marginal / Poor Measured Span Mass (mg/cm2): 0899 Difference (mg/cm2): 0.004 (lpm) (Hg) % Difference / Pass or Fail: 0,45% 418.6 Margina 14.9 Setup and Calibration Values Expected Found Parameter Expected Found Parameter Expected Found Parameter Flow Type Actual Analog Mode Hourly Clock Hondes 0911 0911 12.5 v **Restart Voltage** 12.51 **Baud Rate** 9600 Location 9600 Std Cond Temp 25 C 15 C **RH** Setpoint 45% 45% Tape Advance 24 hrs ZUhr 8.00 DAC 8.0 v Delta T Setpoint 152 15 C **Realtime Avg** 60 mins 600 **RH** Connect No NO **RH** Control Machine Type **PM-10** On On PM-10 Off 244 Flow Setpoint 16.7 **Pump Protect** Analog FS 1.0 v 16. LOV Last 6 Errors in E-BAM Error Log Time Date Time Error Date Error 4 6/24/22 0929 Nessages No no 5 6 3 Audit Notes:

	5-2	e	E-BAIVI IV	Ionthly A	Se	erial #		091			
Audit Date: 4/2	26/20	22					TSU	511	i tord		_
						Audit					
Flow Audit Device	Model:		ta Cal DC		eria	al No: 1	58047		ation Date:	3/23/20	022
Leak Check Value:		as fo	ound:	0.5	_		а	s left:	0.5	_	
				E-BAM		Ref. S	222 - Contraction (1997)		E-BAM	Ref.	Std.
Ambient Temperat	ture:	as fou	ind: 2	1.6	°C	21,8	°c as	eft: Z	21.6	°c 21.	8 ℃
Barometric Pressu	re:	as fou	ind: 70	8,2 mm	Hg	710.5	mmHg as	eft:	708.2 mm	Hg 710	5 5mmHg
16.7 lpm Flow F	Rate	as fou	ind: 16	1 1	pm	16.72	Ipm as	eft:	16.7 1	om 16.7	2 Ipm
14.0 lpm Flow R	ate	as fou	ind: 14	10 1	pm	14.02	Ipm as	eft:	14.0 1	om 14.0	2 lpm
17.5 lpm Flow R	ate	as fou	ind: 17	.5 1	pm	17.50	D Ipm as	eft:	17.5 1	om 17.5	50 lpm
			Mecha	nical Aud	its	(Y = Yes	N = No)				
		Samp	ole nozzle			found		s left	Y		
	т	ape sup	port vane	e clean:	as	found	Y a	s left	Y		
		Tape sp	ool cover	s tight:	as	found	Y a	s left	Y		
	Р	M10 par	ticle trap	clean:	as	found	Ya	s left	Y		
		PM10) drip jar	empty:	as	found	Y a	s left	Y		
		PM10 b	ug scree	n clear:	as	found	Y a	s left	r		
Man	ual Span N	Nembra	ne Test					Pur	np Test		
Expected Span	Mass (mg	/cm2) : (0.89	l		Flow Rate	e Vac	uum	Qua	lity Catego	ory
Measured Span	Mass (mg	/cm2) :	0.91	1		14.0 - 15.	0 Va	lue	Good /	Marginal	/ Poor
Differ	ence (mg	/cm2) :	0.07	2		(lpm)	()	lg)			
% Differer	ice Pass	dr Fail:	2.22	%		14.4	416	.3	Mo	inginal	l
		_	Set	tup and Ca	alik	oration Va	lues			0	
Parameter	Expected	Found	Pai	rameter		Expected	Found	Pa	rameter	Expected	Found
Clock	0924	0924	A	nalog Mo	de	Hourly	Hourly	Fle	ow Type	Actual	Act
Location	2	2		Baud Ra	te	9600	9600	Rest	art Voltage	12.5 v	12.50
Tape Advance	24 hrs	ZYhvs		RH Setpoi	nt	45%	45%	Std	Cond Temp	25 C	25C
Realtime Avg	60 mins	60 mm	Delt	a T Setpoi	nt	15 C	15C		DAC	8.0 v	8.00
Machine Type	PM-10	Pm-10		RH Contr	ol	On	on	RH	Connect	No	NO
Analog FS	1.0 v	1.00	Fle	ow Setpoi	nt	16.7	16.7	Pun	np Protect	Off	OFF
			Last	6 Errors i	n E	-BAM Erro	or Log				-
Erre	or		Date	Time			Error			Date	Time
1 No new Mess	ages	-	4/26/22	0928	4						
2	0				5						
3					6						
Audit Notes:											

	n la harres
NC	RTHWIND
	INIC.

Audit Date: 5/19	120	250				erial # udited By	the second se	_	296 Wil	lifor	d	
	-			F	-	Audit		-				
Flow Audit Device Mo	odel:	BGI De	Ita Cal Do			and the second sec	58047	(Calibrat	ion Date:	3/23/2	022
Leak Check Value:		as f	ound: 🕻	2,5				_	left:	-		
				E-BAM		Ref. S	td		F	E-BAM	Pof	. Std.
Ambient Temperatur	e:	as for	und: 2:	2.9	°c	I service and the service of	100 C 100 C 100	as le	ft. 7	2.9	°c 22.	
Barometric Pressure:		as for		07.3 n		6-1		1		07.3 mm		0 mmH
16.7 Ipm Flow Rate		as for		0.7	Ipm			as le		-		3 lp
14.0 lpm Flow Rate		as for		1.0	lpm			as le			pm 16.1	
17.5 lpm Flow Rate		as for		1.5	Ipm			as le	_	-	pm 17.5	1.22
						(Y = Yes		1.00				in the
		PM10 PM10 k	rticle tra 0 drip jar oug scree	empty:	as	found found found	Ý	as	left left left	Y		
Manual	Span M	Vembra	ne Test						Dum	Test		
Expected Span Ma				1		Flow Rate		Vacu			lity Categ	orv
Measured Span Ma						14.0 - 15.		Valu		1	Marginal	
			0.01	and the second division of the second divisio		(lpm)		(Hg	g)			
% Difference	/ Hass	or Fail:	1.23	%		14.1	4	11.	3	MAD	derat	
					Calik	oration Va	and the second second		-		here u	~
Parameter Exp	pected	Found		rameter	_	Expected		nd	Para	meter	Expected	Found
Clock	31	11.31	A	nalog M	ode		How	ily	Flow	/ Туре	Actual	Act
Location -	2	2	12	Baud F	Rate	9600	glec	70	Restar	t Voltage	12.5 v	12.50
	4 hrs	24hr		RH Setp	oint	45%	45	6	Std Co	nd Temp	25 C	25C
Realtime Avg 60) mins	60mi	A Delt	a T Setp			150	- 1		AC	8.0 v	8.0V
	M-10	PM-10		RH Con			on			onnect	No	NO
Analog FS 1	L.0 v	1.00	FI	ow Setp	oint	16.7	16.7		Pump	Protect	Off	off
			2000 - 20		in E	-BAM Erro						_
Error			Date	Time			Er	ror			Date	Time
	gals		5/19/22	1136	_			_	-			
1 No new mess	0											
1 No new mess	0				5	-	-					

F-BAM Monthly Audit and Maintenance

Audit Date: <u>6</u> Flow Audit Device W Leak Check Value: Ambient Temperatu Barometric Pressure 16.7 lpm Flow Ra 14.0 lpm Flow Ra	1odel:		a Cal DC- und:	Flow A		TIS	tewa	ast U	o.lli	tord
Leak Check Value: Ambient Temperatu Barometric Pressure 16.7 lpm Flow Ra	- ire:			1A Seria						
Leak Check Value: Ambient Temperatu Barometric Pressure 16.7 lpm Flow Ra	- ire:				al No: 15					
Ambient Temperatu Barometric Pressure 16.7 lpm Flow Ra		as fo	und: _/					on Date: _	3/23/2)22
Barometric Pressure 16.7 lpm Flow Ra				2.4		as	left:	0.4	_	
Barometric Pressure 16.7 lpm Flow Ra				E-BAM	Ref. St	d.		E-BAM	Ref	. Std.
16.7 lpm Flow Ra		as four	nd: 3	3.0 °c	31.4	°c as le	eft: 🔽	3.0 "	c 31.	4 °c
그 김 사람이 집에 정하는 것을 가지 않는 것이다.	e:	as four	nd: 71	3, 6 mmHg	713.5	mmHg as le	eft: 71	3.6 mm+	ig 713.	5 mmHg
14.0 lpm Flow Ra	te	as four	nd: 10	0.7 lpm	16.98	Ipm as le	eft: 16	.7 lp	m 16.9	8 Ipm
and the same server and the same server and the same	te	as four	nd: 1	1.0 lpm	14.20	pm as le	eft: 14	1.0 Ip		26 Ipn
17.5 lpm Flow Ra	te	as four	nd: 1-	7.5 lpm	17.68	Ipm as le	eft: [-	7.5 lp	m 17.1	68 Ipn
			Mecha	nical Audits	(Y = Yes	N = No)				
		Samp	le nozzle	clean: as	found	Y as	s left 🔡	Y		
	Та	ape supp	ort vane	clean: as	found	Y as	left	Y		
	-	Tape spo	ol cover	s tight: as	found	Y as	s left 🔄	Y		
	PI	M10 par	ticle trap	clean: as	found	Y as	s left	Y		
		PM10	drip jar	empty: as	found	Y a:	s left	Y		
		PM10 b	ug screei	n clear: as	found	Y as	s left	Y		
Manu	al Span N	/lembrar	ne Test				Pump	Test		
Expected Span M			0.950	2	Flow Rate	e Vacu	um	Qua	lity Categ	ory
Measured Span M	lass (mg/	/cm2):	0.95	12	14.0 - 15.	0 Val	ue	Good /	Marginal	/ Poor
Differe	nce (mg/	/cm2) :	0.00		(lpm)	(H	g)			
% Difference	ce / Pass	or Fail:	0.2		14.8	432	2.4	Marg	inal	
				up and Cali		lues		0		
Parameter E	xpected	Found	Par	ameter	Expected	Found	Para	meter	Expected	Found
Clock	1045	1045	A	nalog Mode	Hourly	Hourly	Flov	v Туре	Actual	Act
Location	2	2		Baud Rate	9600	9600	Restar	t Voltage	12.5 v	12.5
Tape Advance	24 hrs	Zyhrs	5	RH Setpoint	45%	45%	Std Co	ond Temp	25 C	252
Realtime Avg	60 mins	60mm	Delta	a T Setpoint	15 C	152	C	DAC	8.0 v	8.0
Machine Type	PM-10	PM-10		RH Control		on		onnect	No	NO
Analog FS	1.0 v	1.0V	Fle	ow Setpoint	16.7	16.7	Pump	Protect	Off	0.4
			Last	6 Errors in	E-BAM Err	or Log				
Erro	r		Date	Time		Error			Date	Time
1 No new Me	issage	s	6/24/22	1051 4						
2	0			5						
3]		6)					

E-BAM Monthly Audit and Maintenance

Station # DOE					Se	erial #	Na	:33	13			
Audit Date: 4/	26/20	550			A	udited By :	T	SU	1.11	ford		
				Flo	w	Audit						
Flow Audit Device	Model:	BGI Del	ta Cal DC	C-1A S	eria	al No: 1	5804	7	Calibrat	ion Date:	3/23/2	022
Leak Check Value:		as f	ound:	0.5	_			a	s left: 🕹	9.5	_	
				E-BAM		Ref. S	td.			E-BAM	Ref	. Std.
Ambient Temperat	ure:	as fou		3,0	°C	22,8	0	casl	eft: 2	3.0	°C 22,	8 ℃
Barometric Pressur	re:	as fou		10.5 mr	nHg	712.5	mmH	ig as l	eft: 7	10.5mm	Hg 712.	5 mmHg
16.7 lpm Flow R		as for			lpm	16.72	- Ipi	masl			om 16.7	
14.0 lpm Flow R	ate	as fou	und: 14	1.0	lpm	14.12	- Ip	masl	eft: 14	1.0 1	pm 14.1	2 lpm
17.5 lpm Flow R	ate	as fou	und: 1	1,5	lpm	17.52	- Ip	masl	eft: 17	5 1	om 17.5	2 lpm
			Mecha	nical Auc	lits	(Y = Yes	N = N	lo)			1	
		Sam	ple nozzle	e clean:	as	found	Y	a	s left	Y		
	т	ape sup	port van	e clean:	as	found	Y	a	s left	Y		
		Tape sp	ool cover	rs tight:	as	found	Y	a	s left	Y		
	Р	M10 pa	rticle trap	p clean:	as	found	Y	a	s left	Ý		
		PM10) drip jar	empty:		found	Y	a	s left	Y		
		PM10 b	oug scree	n clear:	as	found	Y	a:	s left	Y		
Manu	ual Span M	Membra	ne Test		3	1			Pum	p Test		
Expected Span M	Mass (mg,	/cm2) :	0,88	35		Flow Rate		Vacu	um	Qua	lity Categ	ory
Measured Span M	Mass (mg	/cm2) :	0.87	77		14.0 - 15.	0	Val	ue	Good /	Marginal	/ Poor
Differ	ence (mg,	/cm2) :				(lpm)		(H	g)			
% Differen	ce /Pass	or Fail:	0.91	%		14.9	4	32.	1	Margi	nal	
				tup and C	alil	oration Va	lues			0		
and the second	Expected			rameter		Expected	-	und	and the second	ameter	Expected	
the same second s	1014	1014	A	nalog Mo	-		_	uring		и Туре	Actual	Act
Location	3	3	2	Baud Ra			96			rt Voltage	12.5 v	12.51
Tape Advance	24 hrs	24hr		RH Setpo			45			ond Temp	25 C	250
Realtime Avg				a T Setpo			150		-	DAC	8.0 v	8.00
Machine Type		PM-10	-	RH Cont	_		br			Connect	No	NO
Analog FS	1.0 v	1.0V	FI	ow Setpo	int	16.7	16.	7	Pump	Protect	Off	04
			Last	6 Errors	in E	-BAM Erro	or Lo	g				
Errc	or		Date	Time				Error			Date	Time
1 No new message	ges		1/26/22	1020	4			_	_	_		
2 0	-				5							
3					6							-
Audit Notes:								-				

	1/11/100000	
NC	RTHWN	
		-

Audit Date: 5/	1912	012		Serial # Audited By	W233		01		
	110		e l		· <u>1.</u> .	W.11	tord	_	
Flow Audit Device N	Andali	PCI Dalta		ow Audit	500.17				DI B
Leak Check Value:	viouei.	BGI Delta (Serial No: 1	158047		on Date:	3/23/2	022
Leak check value.		as ioun	nd: 0.5	-	a	s left: 🧲	1.5		
and the second second			E-BAM	Ref. S	and the second second		E-BAM	Ref	. Std.
Ambient Temperatu		as found		°c 23.1	°c as	eft: 23	.9	°c 23,	
Barometric Pressure	C2	as found	10010	mHg 710.0				nHg 710.	0 mm
16.7 lpm Flow Ra		as found		1pm 16.7		eft: 16		Ipm 16.7	
14.0 lpm Flow Ra		as found		Ipm 14.0		eft: 14	0 1	pm 14.0	77 lp
17.5 lpm Flow Ra	ite	as found:	: 17,5	1pm 17,30	🗘 Ipm as l	eft: 17	,5 1	pm 17.	30 lp
		M10 particl PM10 dr PM10 bug	covers tight: le trap clean: ip jar empty: screen clear:	as found as found as found as found		s left s left s left s left			
		Membrane 1				Pump	Test		
Expected Span M				Flow Rate	and the second second			ality Catego	
Measured Span M				14.0 - 15.		1.5	Good /	Marginal	/ Poor
		/cm2) : 👌 ,		(lpm)	(H				
% Differenc	e / Pass	or Fail: 🙆 ,	90%	14.2	403	.8	Ma	iginal	
			Setup and C	alibration Va	lues			9	
					-	Parar	neter	Expected	Found
	xpected		Parameter	Expected	Found				4 1
Clock /		Found 1302	Analog Mo	de Hourly	Houvely	Flow	Туре	Actual	Act
Clock / Location	302	1302	Analog Mo Baud Ra	de Hourly ate 9600	Hourly 9600	Flow Restart	Type Voltage	12.5 v	12.5V
Clock (Location Tape Advance	302 3 24 hrs	1302 3 24hr	Analog Mo Baud Ra RH Setpoi	de Hourly ate 9600 int 45%	Hourly 9600 45%	Flow Restart Std Cor	Type Voltage nd Temp	12.5 v 25 C	12.5V
Clock / Location Tape Advance Realtime Avg 6	302 3 24 hrs 50 mins	1302 3 24hr 60min	Analog Mo Baud Ra RH Setpoi Delta T Setpoi	de Hourly ate 9600 int 45% int 15 C	Hourly 9600 45% 15C	Flow Restart Std Cor D/	Type Voltage nd Temp AC	12.5 v 25 C 8.0 v	17.5V 25C 8.0V
Clock (Location Tape Advance Realtime Avg (Machine Type	302 324 hrs 50 mins PM-10	1302 3 24 hr 60 min PM-10	Analog Mo Baud Ra RH Setpoi Delta T Setpoi RH Contr	de Hourly ate 9600 int 45% int 15 C rol On	Hourly 9600 45% 15C On	Flow Restart Std Cor D/ RH Co	Type Voltage nd Temp AC nnect	12.5 v 25 C 8.0 v No	12.5V 25C 8.0V NO
Clock / Location Tape Advance Realtime Avg 6	302 3 24 hrs 50 mins	1302 3 24hr 60min	Analog Mo Baud Ra RH Setpoi Delta T Setpoi RH Contr Flow Setpoi	de Hourly ate 9600 int 45% int 15 C rol On int 16.7	Hourly 9600 45% 15C 0n 16:7	Flow Restart Std Cor D/ RH Co	Type Voltage nd Temp AC	12.5 v 25 C 8.0 v	12.5V 25C 8.0V NO
Clock / Location Tape Advance Realtime Avg 6 Machine Type Analog FS	302 324 hrs 50 mins PM-10 1.0 v	1302 3 24 hr 60 min PM-10 1.0 v	Analog Mo Baud Ra RH Setpoi Delta T Setpoi RH Contr Flow Setpoi Last 6 Errors i	de Hourly ate 9600 int 45% int 15 C rol On int 16.7	Hourly 9600 45% 15C 0n 16.7	Flow Restart Std Cor D/ RH Co	Type Voltage nd Temp AC nnect	12.5 v 25 C 8.0 v No Off	12.5V 25C 8.0V NO OFF
Clock (Location Tape Advance Realtime Avg 6 Machine Type Analog FS	302 324 hrs 50 mins PM-10 1.0 v	1302 3 24 hr 60 min PM-10 1.0 V	Analog Mo Baud Ra RH Setpoi Delta T Setpoi RH Contr Flow Setpoi Last 6 Errors in ate Time	de Hourly ate 9600 int 45% int 15 C rol On int 16.7 n E-BAM Erro	Hourly 9600 45% 15C 0n 16:7	Flow Restart Std Cor D/ RH Co	Type Voltage nd Temp AC nnect	12.5 v 25 C 8.0 v No	12.5V 25C 8.0V NO
Clock / Location Tape Advance Realtime Avg 6 Machine Type Analog FS	302 324 hrs 50 mins PM-10 1.0 v	1302 3 24 hr 60 min PM-10 1.0 V	Analog Mo Baud Ra RH Setpoi Delta T Setpoi RH Contr Flow Setpoi Last 6 Errors i	de Hourly ate 9600 int 45% int 15 C rol On int 16.7	Hourly 9600 45% 15C 0n 16.7	Flow Restart Std Cor D/ RH Co	Type Voltage nd Temp AC nnect	12.5 v 25 C 8.0 v No Off	12.5V 25C 8.0V NO OFF

E-BAM Monthly Audit and Maintenance

	E-3					NZ3				
Audit Date:	24/207	22		AL	udited By :	T. 5	Stewa	rt wi	llifor	d
			-	Flow A	Audit					
Flow Audit Device	Model:	BGI Delta	a Cal DC	-1A Seria	al No: 1	58047		ation Date:	3/23/20)22
Leak Check Value:		as fo	und:	0.3			as left:	0.3		
				E-BAM	Ref. St	td.		E-BAM	Ref.	Std.
Ambient Temperat	ture:	as four	nd: 3	0.4 °c	29.8	°c a	s left:	20.4	°c 29.	8 %
Barometric Pressu	re:	as four	nd: 7	10, 1 mmHg	711.5	mmHg a	s left:	710.1 mm	Hg 711.	5 mmH
16.7 lpm Flow F	Rate	as four	nd: 16	7 lpm	16.83	Ipm a:	s left:	16.7 1	m 16.8	3 Ipr
14.0 lpm Flow R	late	as four	nd: 14	1.0 lpm	14.0	3 Ipm a	s left:	14.0 1	om 14.0	03 lpr
17.5 lpm Flow R	late	as four	nd: /-	7,5 lpm	17.6	7 lpm a	s left:	17.5 1	om 17.0	o7 lpr
			Mecha	nical Audits	(Y = Yes	N = No)				
			le nozzle		found	Y	as left	Y		
		ape supp			found	Y	as left	Y		
		Tape spo		0	found	Y	as left	Y		
	Р	M10 part	· · · · · · · · · · · · · · · · · · ·		found	Y	as left	Y		
		PM10	drip jar	empty: as	found	Y	as left	Y		
		PM10 bu	ug scree	n clear: as	found	Y	as left	Y		
Man	ual Span N	Aembran	e Test				Pun	np Test		
Expected Span	Mass (mg	/cm2) :	0.91	9	Flow Rate					
Measured Span	Mass (mg	/cm2) :	0.9	23	14.0 - 15.	0 1	Value	Good /	Marginal	/ Poor
Differ	rence (mg,	/cm2) :	0.0		(lpm)		(Hg)			
% Differer	nce / Pass	or Fail:	0.4	3%	14.0	410	2.5	mar	gnal	-
			Se	up and Cali	bration Va	lues		(1	
Parameter	Expected	Found	Par	ameter	Expected	Found	d Pa	rameter	Expected	
Clock	1 × I	1134	A	nalog Mode		Howk		ow Type	Actual	Act
Location	3	3		Baud Rate	9600	9600		art Voltage	12.5 v	12.50
Tape Advance	24 hrs	24hr		RH Setpoint		45%	Std (Cond Temp	25 C	25%
Realtime Avg		60mm		a T Setpoint		15%		DAC	8.0 v	8.0V
Machine Type	PM-10	PM-10		RH Control		on		Connect	No	NO
Analog FS	1.0 v	1.01	FI	ow Setpoint	16.7	16.7	Pum	np Protect	Off	off
			Last	6 Errors in I	E-BAM Err					
Error Da			Date	Time		Erro	or		Date	Time
1 No new p	ussage	5 1	140	6/24/224						
2	0			5						
3			_	6						
Audit Notes:							000.0		0	-
This is the	initial	Andi	t for	W2331	4 Uni	+ Wa	63513	went	down a	n

6/19/20229 2200

NIO	RTHWIND
INU	RIHWIND

E-BAM Monthly Audit and Maintenance

Station # $DbE-4$ Audit Date: $\sqrt{126120}$	-7·7	_		Serial # Audited B	WZ			[]		
126/20	22		Elo	w Audit	y	>0	U.III	tord		
Flow Audit Device Model:	BGI De	ta Cal DC		erial No:	15804	7	Calibrat	ion Date:	3/23/2	022
Leak Check Value:		ound:	0.5	-	10001		s left:	0.5	5/25/2	022
		_	E-BAM	Def	C+-1		-			0.1
Ambient Temperature:	as fou	und: Z	and the back of	°c 24,2	Std.	c as le	oft 2	E-BAM	-	. Std.
Barometric Pressure:	as for		3,3 mn	11-	D mmł	_		3.9 3.3 mm	01	-
16.7 lpm Flow Rate	as for			pm 16.9		masl			om 16.9	0 mmH
14.0 lpm Flow Rate	as for	10		pm 14.1		masl			om 14.1	and a second
17.5 lpm Flow Rate		masl		m 17.66 lpn						
aller i	as for		nical Aud	its (Y = Ye		-		10	1	
	Sam	ple nozzle		as found	× 11-1		s left	Y		
		port vane		as found	Y	_	left	Y		
		ool cover		as found	Y	_	left	Ý		
	PM10 pa	rticle trap	clean:	as found	Y	as	left	Y		
	PM10) drip jar	empty:	as found	Y	as	left	Y		
	PM10 k	oug scree	n clear:	as found	Y	as	left	Ý		
Manual Span	Membra	ne Test					Pum	o Test		
Expected Span Mass (m	g/cm2):	0.915	5	Flow Ra	te	Vacu	ium	Qua	lity Categ	ory
Measured Span Mass (m	g/cm2) :	0.89	8	14.0 - 1	5.0	Val	ue	Good /	Marginal	/ Poor
Difference (m	g/cm2):	0,01	7	(lpm)	(H	g)			
% Difference / Pas	sor Fail:	1.87	%	15.0	. 1	13.	0	Good	/ Marg	ing)
				alibration	/alues				0	
Parameter Expecte	d Found	Par	rameter	Expecte	d Fo	und	Para	meter	Expected	Found
Clock 1141	1141	A	nalog Mo	de Hourly	Ho	ruly	Flov	v Туре	Actual	Act
Location 4	4	1	Baud Ra	ite 9600	91	200	Resta	t Voltage	12.5 v	125
Tape Advance 24 hrs	24 hr	5	RH Setpo	int 45%	45	%	Std Cond Temp		25 C	250
Realtime Avg 60 mins	1		a T Setpo		150	2	DAC		8.0 v	8.0 V
Machine Type PM-10	11.		RH Cont		on			onnect	No	NO
Analog FS 1.0 v	1.0 V		ow Setpo		16.		Pump	Protect	Off	off
				n E-BAM E						
Error		Date	Time			Error			Date	Time
1 No new message	es	4/26/22	1145	4	_					-
2				5						
3	1			6						

2 .	11	10.		
N	07		AL	NE
			V V I	INL

Audit Date: 5//	9/20	22	A	udited By	TS.	(1):	II: EN	rd				
	1			Audit		101	11. 10.					
Flow Audit Device	Model:	BGI Delta C		10122 Alt 1000	58047	Calibrat	ion Date:	3/23/2	022			
Leak Check Value:		as found	1: 0,4	Serial No: 158047 Calibration Date: $3/23/2022$ as left: $O, 4$								
			-									
Ambient Temperat		as found:	E-BAM	Ref. S	TE STATES	-	E-BAM	and the second s	Std.			
Barometric Pressu		as found:			°c as l		3.8	°C ZZ.	-			
16.7 lpm Flow R		as found:				-	01,8mm		SmmH			
14.0 lpm Flow R		as found:			lpm as l			pm 16.8	4			
17.5 lpm Flow R		as found:	17,5 lpn					pm 14.	lp			
	ute	and the second second	echanical Audits				7.5 1	pm 17.6	3 Ipi			
	-	PM10 particle PM10 drij PM10 bug s	o jar empty: a	s found s found s found	Y a:	s left s left s left	Y Y					
Manu	ial Span M	Viembrane To	est			Pump	Test					
Expected Span N				Flow Rate	Vacu	um	Qua	lity Catego	ory			
Measured Span N				14.0 - 15.	0 Val	ue		Marginal				
Differe	ence (mg,	/cm2) : 🥑 🛺	006	(lpm)	(H	g)		_				
	ce / Pass	or Fail: 👩	.65%	14.1	389	.0 (90)		вd				
% Differen	and the second								-			
% Differen			Setup and Cali	pration va		Parameter		F	Found			
	Expected	Found	Parameter	Expected		Para	meter	Expected	Found			
Parameter I Clock		1218	Parameter Analog Mode	Expected Hourly			meter Type	Actual	Act			
Parameter I Clock Location	Expected 1218 4	1218	Parameter Analog Mode Baud Rate	Expected Hourly 9600	Found Hourty 9600	Flow		and a second second	Act 12.5V			
Parameter I Clock Location Tape Advance	Expected 1218 4 24 hrs	1218 4 24hrs	Parameter Analog Mode Baud Rate RH Setpoint	Expected Hourly 9600 45%	Found Howry 9600 45%	Flow Restar Std Co	r Type t Voltage nd Temp	Actual 12.5 v 25 C	Act 12.5V 25C			
Parameter I Clock Location Tape Advance Realtime Avg	Expected 1218 4 24 hrs 60 mins	1218 4 24hrs 60mm	Parameter Analog Mode Baud Rate RH Setpoint Delta T Setpoint	Expected Hourly 9600 45% 15 C	Found Hourty 9600	Flow Restar Std Co D	Type t Voltage nd Temp AC	Actual 12.5 v 25 C 8.0 v	Act 12:50 250 8.00			
Parameter I Clock Location Tape Advance Realtime Avg Machine Type	Expected (2)8 4 24 hrs 60 mins PM-10	1218 4 24hrs 60 min 19M-10	Parameter Analog Mode Baud Rate RH Setpoint Delta T Setpoint RH Control	Expected Hourly 9600 45% 15 C On	Found How My 9600 45% 1.5C On	Flow Restar Std Co D RH Co	v Type t Voltage nd Temp AC onnect	Actual 12.5 v 25 C 8.0 v No	Act 12.5V 25C 8.0V NO			
Parameter I Clock Location Tape Advance Realtime Avg	Expected 1218 4 24 hrs 60 mins	1218 4 24hrs 60mm	Parameter Analog Mode Baud Rate RH Setpoint Delta T Setpoint	Expected Hourly 9600 45% 15 C On	Found Howry 9600 45% 15C	Flow Restar Std Co D RH Co	Type t Voltage nd Temp AC	Actual 12.5 v 25 C 8.0 v	Act 12:50 250 8.00			
Parameter I Clock Location Tape Advance Realtime Avg Machine Type Analog FS	Expected 1218 4 24 hrs 60 mins PM-10 1.0 v	1218 4 24hrs 60min 10min 1.0v	Parameter Analog Mode Baud Rate RH Setpoint Delta T Setpoint RH Control Flow Setpoint Last 6 Errors in 1	Expected Hourly 9600 45% 15 C On 16.7	Found How My 9600 45% 1.5C 0M 16.7 or Log	Flow Restar Std Co D RH Co	v Type t Voltage nd Temp AC onnect	Actual 12.5 v 25 C 8.0 v No Off	Act 12.5V 25C 8.00 NO 0.ff			
Parameter I Clock Location Tape Advance Realtime Avg Machine Type Analog FS Erro	Expected 1218 4 24 hrs 60 mins PM-10 1.0 v r	1218 4 24hrs 60min 100 1.00 Da	Parameter Analog Mode Baud Rate RH Setpoint Delta T Setpoint RH Control Flow Setpoint Last 6 Errors in I te Time	Expected Hourly 9600 45% 15 C On 16.7 E-BAM Erro	Found Howry 9600 45% 15C 0n 16.7	Flow Restar Std Co D RH Co	v Type t Voltage nd Temp AC onnect	Actual 12.5 v 25 C 8.0 v No	Act 12.5V 25C 8.0V NO			
Parameter I Clock Location Tape Advance Realtime Avg Machine Type Analog FS	Expected 1218 4 24 hrs 60 mins PM-10 1.0 v r	1218 4 24hrs 60min 100 1.00 Da	Parameter Analog Mode Baud Rate RH Setpoint Delta T Setpoint RH Control Flow Setpoint Last 6 Errors in 1 te Time 22 1723 4	Expected Hourly 9600 45% 15 C On 16.7 E-BAM Erro	Found How My 9600 45% 1.5C 0M 16.7 or Log	Flow Restar Std Co D RH Co	v Type t Voltage nd Temp AC onnect	Actual 12.5 v 25 C 8.0 v No Off	Act 12.5V 25C 8.00 NO 0.ff			
Parameter I Clock Location Tape Advance Realtime Avg Machine Type Analog FS Erro	Expected 1218 4 24 hrs 60 mins PM-10 1.0 v r	1218 4 24hrs 60min 100 1.00 Da	Parameter Analog Mode Baud Rate RH Setpoint Delta T Setpoint RH Control Flow Setpoint Last 6 Errors in I te Time	Expected Hourly 9600 45% 15 C On 16.7 E-BAM Erro	Found How My 9600 45% 1.5C 0M 16.7 or Log	Flow Restar Std Co D RH Co	v Type t Voltage nd Temp AC onnect	Actual 12.5 v 25 C 8.0 v No Off	Act 12.5 v 25C 8.0 v NO 0.44			

E-BAM Monthly Audit and Maintenance

Station #	2412	2			erial # <u> </u>	NZ33 TSL		4214	God			
Addit Date:e/	29/0				Audit	1, STC	wan	Willis	ora			
Flow Audit Device I	Model:	BGI Delta	a Cal DC-			58047 (Calibrati	on Date:	3/23/20	022		
Leak Check Value:			und: 🖉		as left: 0,4							
				E-BAM	Ref. St	d.		E-BAM	Ref.	Std.		
Ambient Temperat	ure:	as four		3.5 %		°c as le	eft: 3	33.5	°c 32.	7 °c		
Barometric Pressur		as four		3, 0 mmHg		mmHg as le		703, Omm	ig 705,	O mmHg		
16.7 lpm Flow R	ate	as four		1	0-	Ipm as le	eft: 16	.7 lp	m 16.9	7 lpm		
14.0 lpm Flow R	14.18	Ipm as le	eft: 14	1.0 lp	m 14.1							
17.5 lpm Flow R	ate	as four	nd: 1	7,5 lpm	12.0 10 17 10 17 10							
			Mechar	nical Audits	(Y = Yes I	N = No)						
		Samp	le nozzle	clean: a	s found	Y as	left 💧					
	Та	ape supp	ort vane	clean: a	s found	Y as	left 📝	Y				
		Tape spc	ol covers	s tight: a	s found	Y as	ileft 🔄	1				
	PI	M10 par	ticle trap	clean: a	s found	Y as	left 🔄	1				
		PM10	drip jar e	empty: a	s found	Y as	left _	Y				
		PM10 b	ug screer	n clear: a	s found	Y as	s left	1		1		
Manı	ual Span N	/lembrar	ne Test				Pump	o Test				
Expected Span	Mass (mg/	/cm2): (0.915	-	Flow Rate							
Measured Span	Mass (mg/	/cm2) :	0.911		14.0 - 15.	0 Val	ue	Good /	Marginal	/ Poor		
Differ	ence (mg/	/cm2) :	0.000	1	(lpm)	(H	g)					
% Differer	nce / Pass	or Fail:	0.44	%	14.3	392	,1	600	d			
			Set	up and Cal	ibration Va	lues						
Parameter	Expected	Found	Par	ameter	Expected	Found	Para	meter	Expected			
Clock	1231	123	Ar	nalog Mod	e Hourly	Howhy		v Туре	Actual	Act		
Location	4	4		Baud Rate	e 9600	9600'		rt Voltage	12.5 v	12.50		
Tape Advance	24 hrs	24hr		RH Setpoin		45%		ond Temp	25 C	252		
Realtime Avg	60 mins	leann	Delta	a T Setpoin		15°C		DAC	8.0 v	8.0V		
Machine Type		Pm-10	2	RH Contro		On		Connect	No	NO		
Analog FS	1.0 v	1.0V	Flo	ow Setpoin	t 16.7	16.7	Pump Protect		Off	off		
			Last		E-BAM Err							
Err	or		Date	Time		Error			Date	Time		
1 No per v	nessua	res	6/24/22	1010	4							
2	0				5							
3					6							
Audit Notes:												